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Reaction-controlled diffusion: Monte Carlo simulations
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We study the coupled two-species nonequilibrium reaction-controlled diffusion model introduced by
Trimper et al. [Phys. Rev. B62, 6071(2000] by means of detailed Monte Carlo simulations in one and two
dimensions. Particles of typ&may independently hop to an adjacent lattice site, provided it is occupied by at
least oneB particle. TheB particle species undergoes diffusion-limited reactions. In an active state with
nonzero, essentially homogenediparticle saturation density, the species displays normal diffusion. In an
inactive, absorbing phase with exponentially decayrdgensity, theA particles become localized. In situations
with algebraic decayg(t)~t~“8, as occurring either at a nonequilibrium continuous phase transition sepa-
rating active and absorbing states, or in a power-law inactive phasé, plaeticles propagate subdiffusively
with mean-square displaceme{rit(t)fofvtl’“/*. We find that within the accuracy of our simulation data,
~ag as predicted by a simple mean-field approach. This remains true even in the presence of strong spa-
tiotemporal fluctuations of th& density. However, in contrast with the mean-field results, our data yield a
distinctly non-Gaussiai\ particle displacement distributionA(i,t) that obeys dynamic scaling and looks
remarkably similar for the different processes investigated here. Fluctuations of effective diffusion rates cause
a marked enhancement pnf(x,t) at low displacementba, indicating a considerable fraction of practically
localizedA particles, as well as at large traversed distances.
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[. INTRODUCTION In nonequilibrium systems, the detailed balance condi-
tions are violated; i.e., the probability of at least one closed
The goal of statistical mechanics is to understand the reloop of transitions between microscopic configurations de-
lationship between microscopic and macroscopic dynamicpends upon the direction the loop is traversed. This is the
in systems consisting of a large number of degrees of freecase even in stationary states in open systems, through which
dom. One classical success of the equilibrium formalism is steady particle or energy current from the outside is main-
the prediction of universal phase transition behavior: indetained. Outside physics nonequilibrium models may de-
pendent of the microscopic details of their interactions, sysscribe, for example, population dynamics, chemical cataly-
tems with identicabverall features, governed by their sym- sis, and financial markets. Yet reassuringly, universal
metries, spatial dimensiord, and perhaps large-scale behavior has also been found to persist for nonequilibrium
interaction properties, display very similar phase diagramsmodels that display phase transitions between different sta-
Moreover, their critical points are characterized by the sameionary states.
small set of independent scaling exponents. Thus physical Prominent examples are continuous transitions between
systems with very complicated interactions can often be adactive and inactive/absorbing states in diffusion-limited
equately described by considerably simplified models, whiclfchemical” reactions[1]. The class of models we will be
in turn form the basis of simulation studies and numericalstudying involves competing annihilation and offspring reac-
analysis. tions of a single specieB, performing unbiased random
Here we investigate a simple coupled reaction-diffusionwalks on ad-dimensional hypercubic lattice:
system, which however leads to remarkably rich features. N
More specifically, the spatiotemporal fractal structures B—0,
emerging at anonequilibriumcritical point of a reacting spe-
cies B impose nontrivial scaling behavior onto the propaga-
tion of passive random walker8, whose propagation is
however limited to sites occupied by at least @particle. u
One may envision this system to model vifuspresented by nB—0 (1)
the A particles propagation in a carrieB population that is
set close to its extinction threshold; the virus remains dorwith integersm=1, n>1. For large branching rate, the
mant when there are ri®organisms present. Below, we shall system is in an active state with a nonzero and essentially
encounter and characterize the ensuing scaling laws blgomogeneous particle density. In contrast, when the decay
means of Monte Carlo simulations, and compare our numeriprocesses with ratesand . dominate, thdd particle density
cal results with the predictions of a mean-field approxima-~eaches zero, and the dynamics ceases entirely in this inac-
tion. tive, absorbingstate. By appropriately tuning the reaction

B—(m+1)B,

1063-651X/2003/6@)/04612119)/$20.00 68 046121-1 ©2003 The American Physical Society



REID, TAUBER, AND BRUNSON PHYSICAL REVIEW E68, 046121 (2003

rates a continuous phase transition between these two sta- 5x10°
tionary states can be observigd.

Generically, such transitions fall into thdirected perco-
lation (DP) universality clas$3] with upper critical dimen-
siond.=4. The standard example is represented by the Gri- t |
bov processB—0, B=2B. Equivalently, one may use
scheme(1) with m=1 andn=2. Directed percolation was
initially devised to characterize the transition from finite- to
infinite-sized clusters in directed medfauch as a porous

rock in a gravitational field[4]. Other applications include 0| -

certain models of catalytic reactions, interface growth, turbu- 0 10000 20000 30000 40000 50000 60000
lence, and the spread of epidemi¢d. Experimental evi- ”

dence for DP critical behavior was recently observed in spa-

tiotemporal intermittency in ferrofluidic spiké$]. FIG. 1. Space-time plot for the one-dimensional reactiéns

For active to absorbing state phase transitions in sing|e?>35, 2B—0 at the active/absorbing critical pOI(‘F?C universality
species reactions that include first-order processes, in the apass.
sence of memory effects and quenched disorder, the so- -~ ] ]
called parity conserving(PC) universality class appears to tive state transition of th& system thus induceslacaliza-
represent the only scenario for non-DP critical behafddr tion trarysmonfor theA _partlcles. At the tra_nsmon itself, as
In the above reaction scheni®, PC scaling is observed for Well as in the PC-inactive phase, tBedensity decays alge-
branching and annihilating random walks witk=0, n=2,  braically,
andevenoffspring numbem. In that situation, reactions ei- W
ther create or annihilate an even number of particles. Thus pe(t)~t~ 8 2
the number ofB particles remains either even or odd . . .
throughout the system’s temporal evolution. Indeed, the disWIth .O<0.‘B$1' Correspondingly, thé species propagates
tinct nontrivial scaling exponents of the PC universality SuPdiffusively
class, albeit limited essentially tb=1, can be attributed to TN
this special symmetry of local particle number parity conser- (XD~ %A, 3)
vation. Moreover, ford=d;~4/3, fluctuations cause the . i .
emergence of a power-law inactive phase, characterized Byhere again &a,<1. In fact, a simple mean-field ap-

the algebraic decay laws of diffusion-limited pair annihila- Proach suggests,= ag [8]. Our goal here is to further elu-
tion 2B—0 (A\=0=0n=2) [7]. cidate the scaling laws for the ensuing anomaldysarticle

When\>0 ormis odd (for n=2), however, parity con- diffusion through Monte Carlo simulations in one and two

servation is destroyed. The case-0 immediately yields a dimensions. We shall also numerically determine the full
transition in the DP universality class with,=4. Yet for me-dependent probability distribution for thespecies dis-
odd m, even if \=0 initially, fluctuations generatesuffi- placements and compare it with the Gaussian distribution

ciently strong decay processBs-0 in d<2 dimensions to Predicted by mean-field theofg]. _

produce a transition to an inactive phase with DP critical B€fore we proceed, we note that our model is related to,
exponents. Fok=0 andd>2, one encounters only an ac- but_qune distinct from, studies of anomalous diffusion on
tive phase for any=>0, as predicted by the mean-field rate sta’Flc fractal str'uctures. These have been used tq describe a
equation[7]. variety of physical phenomena, such as percolation through

At the nonequilibrium continuous phase transition, the reporous or fractured media and electron-hole recombination

acting particles form spatiotemporal fractal structures char!" amorphous semlgonduct({@]. Ar_10ma|ous d|ffu3|on_ may

acterized by algebraic decay of the correlation functi@me also ensue for particle transport in a random med'“'”.” .W'th
example is depicted in Fig)1in Ref.[8] it was suggested to quenched dlsolrder, provided the 0bstac|e§ are sufficiently
employ thesalynamicfractals of reacting agen® as back- strong to effectively reduce the number of diffusive paths on

bones for nearest-neighbor hopping processes of anothétﬁrge le dngth Scalt@?]' V\f emtﬂhafsaet ‘"’llg?'n tthat in the sys-
otherwise passive, particle speciesTheA particles are then €™M Under investigation here the fractal structure evotijes

allowed to move to a nearest-neighbor site only if that site ié(]f?fm'(f‘a"y which pthV|d(\a/§,han alléterzna::v:admetzhanlsmbfor Slfjb'
occupied by at least orig particle. In an active state of ttig : u'ISI\t/)(Ia protp;}agg on. en 'thqt') 0 Ys’t et' nua ero
system, with a largely homogeneous patrticle distribution, th wailable paths decreases with time. Yet notice thatar-

A particles follow Fick's normal diffusive propagation law, icles that have be_come Iocah_zed on an isoldeduster for
S(1)2)= 2Dt with diffusion constanD ~a2/ herea some time may still become linked to a large connected re-

(x(t)a)=2Dt, with diffusi o/ 7o, WI _#d gion of available sites later.

denotes the lattice constant of the hypercubic lattice,zy In Sec. Il we briefly review the theoretical considerations

the microscopic hopping rate. On the contrary, in a DP-typgyf Ref. [8], and list the central results from the mean-field
inactive phase with an exponentially decayngiartlcle approach for theA species propagation on the dynaniic

density, theA species will become localized, i.gx(t)3)  fractal. In Sec. Ill we give an overview of the Monte Carlo
—const ag—oo. In precisely this sense the inactive to ac- simulation methods employed in our study. Next, in Sec. IV
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TABLE I. Critical exponents for the parity conservif@C) and directed percolatiofDP) universality
classes of active to absorbing phase transitions, as determined from Monte Carlo simulations in one and two
dimensiong 2]. Here,r denotes the deviation of a relevant control parameter from the critical point. For
directed percolation, the first-order results from thexpansion nead.=4 dimensions are given as well.

Critical exponents PGI=1 DP,d=1 DP,d=2 DP,d=4—¢
ps~|r|? B~0.92 B~0.276 B~0.584 B=1—€l6+0(€)
E~r|7 v~1.84 v~1.097 v~0.734 v=1/2+ €/16+ O(€?)
to~&E~r| % z~1.75 z~1.581 z~1.764 7=2—€/12+0(€?)
pe(t)~t= a~0.285 a~0.159 a~0.451 a=1—el4+0O(e?)

we first present our results for the anomaldudiffusion as  mensionless(marginal in the RG sengeat d.(n)=2/(n
induced by pure annihilation kinetics of thH® species § —1). The mean-field descriptio@) fails in lower dimen-
=0). Section V is devoted to the central issue in our invessions where there is a non-negligible probability that a par-
tigation, namely the subdiffusive behavior of tAegarticles ticle will retrace part of its trajectory. Far=2,3 anticorre-

at the localization transition caused by the active to inactivelations between surviving particles are induced in
absorbing phase transition of the reacting ag@itd/e sum-  dimensionsd<2 andd=1, respectively, since many of the
marize our results in Sec. VI, add concluding remarks, andhearby particles along a specific agent’s trajectory are anni-

point out a few open problems. hilated in the first trace. The annihilation processes then be-
come diffusion limited rather than reaction limited. For the
Il. THEORETICAL PREDICTIONS pair process, the particles need to traverse a distéfige

B o _ _ ~ (Dt)Y2 before they can meet and annihilate, whBrele-
For the specific combination d particle reactions stud- potes theB particle diffusion constant. Hence the particle
ied here, the asymptotic scaling behavior is well understoodyensity should scale as(t)~¢(t) 9~ (Dt)~ %2 Indeed, a
In particular, we shall consider both systems with pure annirenormalization group analysis predicts faB20 (as well
hilation kinetics (B—0), and models with competing anni- 55 for pair coagulation 2— B) [11]
hilation and offspring reactions, as listed(h), in the vicin-

ity of their nonequilibrium phase transition from active to pe(t)~(Dt)" 92 for d<2, (7)
inactive, absorbing states. These phase transitions either fall
into the directed percolatiofDP) or parity conservingPC) pe()~(Dt) " lInDt at d,(2)=2, (8

universality class, both of which have been previously inves-

tigated in detail1]. Specifically, the exponentsg charac- in agreement with exact solutions th=1. Thus particles

terizing the long-time decay of the particle density are wellsurvive considerably longer than E@) would suggest. For

established through simulatiofsee Table)l triplet annihilation (8—0), in one dimension there remain
Let us first consider pure annihilation kinetics with reac-mere logarithmic corrections to the mean-field re§iff],

tion rate . The corresponding mean-field rate equation for

i ' InDt) 2
the B particle density reads PB(t)N(F atd,(3)=1. )
dp(t)=—nupg(t)". (4)
o The higher-orderr{=4) annihilation processes should all be
Forn>1 this yields aptly described by the mean-field power la(@s.
- Exact results for the critical behavior of the DP and PC
pa(t ps(0) _ pe(0) 5 universality classes cannot be derived analytically, but the
n

scaling exponents have been measured quite accurately by
means of computer simulatiofs], see Table I. The univer-
whence at sufficiently large timasg(t) ~ (ut) "¥("~1, in-  sal properties of directed percolation can be represented
dependent of the initial densifyg(0). Forn=1, i.e., spon- through Reggeon field theofyl2], which allows a system-
taneous death with rate, one natura”y finds exponentia| atic perturbational calculation of the critical eXponentS in an
decay, € expansion near its upper critical dimensidp=4. The
one-loop fluctuation corrections to their mean-field values
pe(t)=pg(0)e ™. (6) are listed in Table | as well. At least for DP, the scaling
relation 8=zva holds. A similarly reliable analytic compu-
We expect these results to be valat least qualitatively  tation of the PC critical exponents has as yet not been
in dimensions above an upper critical dimensty) which  achieved, owing to the absence of a corresponding mean-
can be determined through straightforward dimensionafield theory(see Ref[7] for further detail$.
analysis: since thB particles undergo ordinary diffusion, we In Ref. [8], the reaction-controlled diffusion model was
expect [t]=[x]? and of course ind dimensions,[pg] defined as follows. Otherwise passive agehtserform in-
=[x]"% Then by Eq.(4), [x]=[x]%""Y"2 Thusu is di-  dependent random walks to those sites that are occupied by

S (A+t/r)Ye-D’ T n(n-Du’
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at least oneB particle; theB species is subject to diffusion- (13). Upon rescaling, the equation of motigh2) then re-
limited reactions of the above type. In our simulations, weduces to a mere diffusion equatip|

have assumed th& hopping ratefgl to be independent of _ _ R

the number oB particles at adjacent sites. This contrasts the Fna(X,t)=Dpg(t)V2n,(x,t) (14
model of Ref[8], where theA hopping probability to a given R
site was taken to be proportional to the numbeBgfarticles  for the probabilityn, of finding a particleA at pointx at

on that site. Yet as we are mostly interested in the asymptoti§me t, with time-dependent effective diﬁusivi® pe(t). We
behavior at lowB densities, this distinction should be largely may interpret this result as follows. In the original model, the
irrelevant. Moreover, in the majority of systems studied herengpping rate to an adjacent site is proportional to the number
the B pair annihilation reaction was set to occur with prob- of B particles on that site. At sufficiently low densities that
ablllty 1, which eliminates mUltlple site OCCUpationS. mu|t|p|e B partide Occupation of a given site can be ne-
To be specific, considés particles undergoing the Gribov glected, the average density represents the fraction of lat-
reactionsB— 0, B=2B, with an ensuing critical pointin the tice sites available for thé particles to hop to. Thus we
DP Universality class. The effective theory near the phaS@Xpect theA Species diffusion rate to be approximate|y pro-
transition then becomes equivalent to a Langevin equatioportional to the globaB particle density. For this assumption

for a fluctuating fieldb(f,t) [3,12,13: to be accurate, thé particle distribution must also be as-
) ) sumed to be at least roughly uniform. However, local fluc-
db=D(V°=r)b—2ub"+ 7. (10 tuations of theB density may induce some clustering for

i - ) many A particles as well, though certainly to a lesser degree
With (7(x,t))=0, the ensemble average bfover noise since in regions with small disjoiri clusters, theA particles
realizations yields the meaB particle density,(b(x,t)) become localized. Any deviations from the uniform effective
=pg(t). For the correlator of the stochastic noise one findsdiffusion coefficient caused by an inhomogene8ugarticle

. _ _ L distribution would be diminished by this simultaneous clus-
(p(x,t)p(x",t"))=20b(x,t) S(x—x")8(t—1"), (11)  tering. We will discuss these effects in more detail below as

o o we measure deviations from the mean-field behavior.
wh|ch is to be ur_1derstood_ as the prescription to always factor ynder the above mean-field assumption, we may employ
in the local particle density when noise averages are takefhe diffusion equatiori14) to determine how the probability
Accordlng to Eq.(11), all fluctuations vanish in the absorb- distributionnA(i,t) evolves in time for a system of indepen-
Ing state, as they should. AS_ before, o, and w represent  genia particles that all start initially at a particular location
the B particle decay, branching, and coagulation rates, re- . - - . . .
spectively. The control parameterdenotes the deviation X:.O' |.e.,nA(_x,0)=6(x). _Even V‘.”th a tlme—erenQent dif-
from the critical point, e.g.r =(\—0¢)/D in the mean-field fPS'O” coeff|C|er_1t, Eq(14) IS rgadlly solve.d via spatial Fou-
approximation. rier transformation, resulting in a Gaussian:

With the model definition in Ref[8], the effective diffu- -
sivity of the agentsA becomes proportional to the locBl NA(X,t) = 1 exd — . (15)
density. In fact, starting from the classical master equation, A [47D’(1)]9? 4D’ (t)

one can derive the following continuum stochastic equation

of motion for a coarse-grained fiet{x,t) that describes the But the expressiot in Fick's law for standard diffusion
A specied8] becomes replaced with an integral over the evolinden-

sity,
da=D(V?a)b—Da(V?b)+¢ (12

[t
with noise correlations D (t):DLPB(t )dt’. (16)

(LXK ,1))=0, Naturally, the odd moments of distributiéh5) vanish, while

. _ 5 ) ) o (x(t)K)=(|x(t)]*)>0 for k even. We then compute
(L(x,t)p(x",t")y=D[V2a(x,t)]b(X,t) S(x—x") S(t—t")

~Ba(x,H)VZ[b(x,1) 8(x—x") 8(t—t")]. <|>?(t)A|k>=f X[ na(x,t)d%,
(13 [4D' (0] [k+d
The fluctuations of thé field thus influence thé diffusion - TR 2 (7

in a nontrivial manner.

Certainly outside the critical regime, well inside either the For k=2 in particular, this reduces to
active or inactive phases, which for DP are both character-
ized by exponentially decaying correlations in space and (x(t)3)=2dD’(t). (19
time, one may apply a mean-field type of approximation. To
this end, we consider thB particle density to be spatially For a constanB particle density, e.g., the saturation value
homogeneous, and neglect the noise cross-correlations in Eg; in an active phase, we recover ordinary diffusion with
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effective diffusivity D=Dps. In an inactive phase with ex- ticle was deleted with probabilitx. Next, the B particle
ponential density deca§f), we find instead underwent an offspring reactidd— (m-+ 1)B with probabil-
_ ity o. In the simulations discussed here, we chosel, 2,
-, 2dDpg(0) Cat or 4. The offspring particis) were placed on the parent
{(x(V)a)= A (1=e™™). (19 particle’s nearest neighboring sites such that no offsprings
were placed on identical places, and were then subject to the
Thus, asymptotically thé\ particles become localized, with annihilation reactiomB—® (with n=2, 3, or 4) if appli-
<>Z(t)/§>—>2df)p3(0)/)\ in the limit t—o. On the other cable. If theB particle being updated did not undergo an
hand, if theB density decays algebraically, see E2), then  offspring reaction, it subsequently hopped to a nearest-
for 0<ag<1 our mean-field solution predicts subdiffusive neighbor site with some probability and was then subject to

propagation(3) with @,= ag, whereas asymptotically annihilation, which required afi B particles to be located on
R 5 the same site.
(x(t)3)~D InDt (20 Initially, the A particles were also updated via Monte

. ' . o ~ Carlo. To this end, a random direction was chosen, anéthe
if ag=1. Finally, for pair annihilation processes at the criti- particle was moved one step in that direction provided at

cal dimensiond.=2, governed by Eq(8), one finds least oneB particle was present on the destination site. How-
. ) ever, since theA particles were independent, it was later
(X(t)a)~D(InD1)~, (21)  determined that they could be processed seriéilly., by

. ) ) o . simply passing through the list & particles. Technically
and similarly we obtain for triplet annihilation in one dimen- iig represents a microscopically different method, since the

sion, see Eq(9), Monte Carlo procedure causes some particles to be updated
oy = 1o more than once, and others not at all at a given time step. Yet
(x(t)a)~D(DtIn D)™, (220 \ve found that both variants produced identical macroscopic
results.
Ill. MONTE CARLO SIMULATION METHODS Our main interest was to determine the asymptotic scaling

. ) behavior of the globaB particle density in the lattice, as well

Our goal was to employ Monte Carlo simulations t0 cOM- 54 ¢4 measure the mean-square displacement @ species,
parea, with ag, as well as to determine the displacementyyoih, a5 functions of time Henceforth, lengths will be mea-
probability distributionna(x,t) for the A particles, and look  sured in units of the lattice constaag, and time in units of
for deviations from the Gaussian distributiétb) predicted  Monte Carlo steps. In most of our simulations we expect
by the mean-field approach. The simulations discussed heggpatial inhomogeneity in thB particle distribution. In par-
were executed on a cubic lattice with periodic boundary conticular, anticorrelations should develop in low dimensions for
ditions in each spatial direction. In one dimension the latticepure B annihilation kinetics. At the critical point for systems
contained between fOand 16 sites, and the two- exhibiting phase transitions, at sufficiently large times Bhe
dimensional lattice ranged in size from 20000 to 800 species distribution should become a scale-free spatial fractal
% 800. In each simulation the system was initialized by put-at length scales large compared to the lattice constant and
ting one B particle at each sit¢initial density pg(0)=1 smaller than the system sizeompare Fig. L Therefore we
[14]], and by randomly placing throughout the lattice a fixedalso periodically recorded the coordinates of bétand B
number ofA particles with no site exclusion. For all of the particles in order to compute probability distributions and
data given belowexcept where otherwise notedhe density  correlation functions. For example, tBedensity correlation
of A particles in the lattice was fixed af,=0.5. Each time function is defined as
step involved a complete update of thAespecies, followed
by a complete update of tH& particles. The simulation was CB(i,t;i’,t’)=<pB(>Z,t)pB(>Z’,t’)>—<pB>2. (23
terminated either when the number Bfparticles reached a
certain lower limit (usually 0.1% of the number of lattice By the translational and rotational invariance of the lattice,
siteg, or after a fixed number of time steftgpically ~10°). the equal-time density correlations are really a function of

With the exception of some particular runs in which Bie  |x—x’| only. At criticality, we have
particles were noninteractinge., subject only to the decay
B—0) and could thus be updated serially, we proceeded as C(Q,t;;',t):C(|§_§r|)~|§_§r|723/v7 (24)
follows. GivenN particles at the beginning of the time step,
N randomB particles on the lattice were chosen to be up-whence we find at equal positions
dated. In a given time step, sorBeparticles might then be
addressed more than once while others not at all. This is CXtxt)=C([t—t'|)~|t—t'| 2~z (25)
appropriate even though the numberBparticles is chang-
ing in time, because the net loss Bfparticles per time step as a consequence of dynamic scaling.
becomes less than one on time scales short compared to theTo compute the equal-time correlation functi@24) in
simulation length. Th& particles were, in general, subjected one dimension numerically, we fix a particulBrsite and
to the reactions listed iflL), and a single update proceeded in observe the distribution of all oth& particles as a function
that sequence. To implement the procBss 0, the B par-  of the distance from it. We measure this distribution for each
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B particle fixed and then average the resulting distributiondHere v;,=zv describes the critical slowing down as the con-
to obtain(pg(X,t)ps(x’,t)). In higher dimensions, we use trol parameters approaches the phase transitionoat, 7.
the lattice directions as representative of the full distribution~|o— o | ~*t. One first estimates, v;, andc from rela-
and computeC(|>Z—>Z'|) for pairs (>Z.>Z’) with a common tively short simulations at various values @f A simulation
lattice coordinate in one direction. reaching large values afis then performed at the estimated
In many situations we expected the measured quantities t@. . One obtains an improved estimate for by replacings
be power laws as a function of timeThe simplest approach and p(o.t) in Eq. (27) with the long simulation measure-
to computing the exponent in a power-law relationship ~ ments, and then finding the value @f for which p(o,t) is
=t~ naturally is linear regression on frversus In. At the @ straight line. This process may then be repeated to obtain
continuous phase transition separating active and absorbirige desired or computationally accessible accuracy. Note that
states, one expects such a power-law dependence. Howev#accuracies in the estimates ofand »; result in second-
when the system is slightly above or below the critical pa-order inaccuracies for and « [15]. However, this method
rameters, it usually behaves critically for some time beforeonly works wheno is already sufficiently close to. so that
crossing over to supercritical or subcritical behavieither  this first-order approximation is valid. In addition, statistical
an exponential approach to the firparticle density, or a fluctuations in the data must be smoothed as much as pos-
power law with a different exponeat’). If the system is not  Sible through averaging over multiple runs for eachvalue
precisely at criticality(at least for the time scales simulated so thatc and v; can be somewhat accurately determined.
then offcritical behavior could lead to incorrect determina-Unfortunately, we found that our simulations were not exten-
tion of the critical exponent via linear regression. However,sive enough in most cases to apply this method and obtain
one can also compute a local exponestfor a measured even more reliable estimates afy,, ando..
quantity p given by the expressiofi5]

IV. ANNIHILATION KINETICS AND ANOMALOUS
ap=—logyz] p(bt)/p(t/b)]. (26) DIFFUSION

We begin with the results of our Monte Carlo simulations

Thus at timet, supposing a power-law dependence,om, is for pure B species annihilation reactions. These serve to test
the exponent inferred from the valuespfitbt andt/b; i.e.,  the mean-field description of the ensuiAgparticle anoma-
these two data points define a line on a log-log plot whosdous diffusion in dimensions below, at, and above the critical
slope is— ay,. dimensiond.(n)=2/(n—1), and moreover provide a means

The most time-consuming procedure in this study in-to estimate the magnitude of errors to be expected in our
volved finding the critical parameters for which the Systemdata. In addition, the results for tlepair annihilation model
was at criticality. Typically, the parameters and u were  should describe the subcritical behavior for the reactions ex-
fixed, ando was varied. The critical value ef was deduced hibiting active to absorbing transitions in the PC universality
by simultaneously increasing the lower bound by definitelyclass.
identifying systems as subcritical, and decreasing the upper
bound by characterizing. _supercritical systgms. In either case, A. Spontaneous decay—0
the system behaved critically for some tirflenger for o ] » ] ]
closer to the true critical value,) before crossing over toits Ve first verified that our simulations correctly reproduced
asymptotic behavior, and so critical power laws could bethe n=1 solution(6) to the mean-field equatiof) giving
approximated from the system’s intermediate scaling behav@XPonentialB density decay. This result should be valid in
ior. As noted previously, th® species phase transition be- @y dimension since all particles evolve independently. The
tween active and absorbing states induces a localization traf?€@n-field description for tha particles then predicts their
sition for theA particles, with critical subdiffusive behavior. localization according to Eq(19). We ran simulations in
The phase transitions for bofhandB particles clearly occur POth one(system size 10000and two dimensiongsystem
at the same value af., and hencer. can be determined Sizé 100<100) using a decay rat2=0.01, and indeed
independently by measuring both tBeparticle density de- found (_a>'<cellent agreement at I{;\rge times with prediction
cay and theA species mean-square displacements as a funél9- Initially, however, theA particles moved slower than
tion of time. We estimate our typical errors in determiningSudgested by Eq19), consistent though with our different

critical exponents and the subdiffusivespecies power laws microscopic realization of the reaction-controlled diffusion
to be~+0.01. model: the rules adopted in the simulations only distinguish

We also attempted to improve the precision of our estimaP€tween sites that are occupied or unoccupied particles,
tion of o, by a method suggested in REE5], which we now and so multiple _s_lte opcupatlon ef_fectlvely c_or_responds to
briefly describe. For the measured quanjitywhich at the lower Iocallden5|t|e9,.)3 in the gnalytllcal descrlptlon. Yet at
critical parameter value. depends only on some power of low .B_ particle Qen3|t|es m_ultlple site occupation becomes
time t, i.e., p(oe,t)~t~* with some exponent, one ex- neghglble, leading toA species localization precisely as de-
pects in the critical regime~ o, : sprlbed by Eq(1.9).'We' also compgted the actu@lpartlcle _
displacement distribution as a histogram of final net dis-
placements. Using the measured average final mean-square
p(ot)=p(oe,D)[1+ct(oc—0,)]. (27 displacement as input to E¢L5) rather than estimating the
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FIG. 2. TheB particle density and correspondiry species FIG. 3. The measured distribution of thfe particle displace-

mean-square displacement for the pair annihilation reactiBn 2 ments corresponding to the system shown in FigB2é&ir annihi-

—0 with =0.5 ind=1 demonstrating excellent agreement with |ation in one dimensionu=0.5, measured at=10000). Both

the predicted asymptotic power laws. Gaussian(dashedl and exponential fitfull line), uniquely deter-
mined by normalization and fixing the second moment with the

coefficientD, we found good agreement with the predictedSimulation data, are depicted, on linear and logarithrfiitsed
Gaussian distribution in both one and two dimensions, al_scales. The exponer_ltlal fit works very WeI_I, a_Itho_ugh the value at 0
though ind=1 the data perhaps indicate a slight excess oﬁ]n;n ;i)r?rtlp]zpfsit the tails of the observed distribution appear smaller
particles localized very near their initial location. '

In the results summarized above, at each Monte Carl%lapsed whereupon the asymptotic decay 2 is ap-
step the updateB particles hopped to a nearest-neighboringproache’d_ Indeed, the graph verifies that the theoretical ex-
site with probability 1. We also investigated the effect of ponent ag=1/2 is’adequately reproduced in the late time
varying this probability. Initially, the mean-squar dis- interval 1B(3?<t<104 We measured the corresponding expo-
placement then grows faster in situations with IBvparticle nenta, for the meén-squarA particle displacement in this

d_|ffu_S|V|ty because the probability of _multlpB 3|_te occupa- regime as well, and found that the simulation results agree
tion is reduced, leaving a larger fraction of available sites for

the A species. However, as tH particles are depleted the n_|cely W't.h the_ mean-fleld exponemai,= 1/2, 1o the preci-
connectivity of the lattice decreases, and the movement ot " obtained in (?ur s~|mulat|ons. ) ,
the B species quickly becomes the dominant mechanism for W& may also mfeDwO.?g by matching our numerical
A particle diffusion. We found an overall monotonic increaseintegral of pg(t) with (x(t)), though incomplete knowl-
of final A particle mean-square displacements as a functio§dge Ofpg(t), particularly in the transient regime, introduces
of the B diffusivity. In one dimension thétemporary local-  some errors to this estimate. A valide>0.5 indicates that
ization of anA particle requires only two sites unoccupied by more than onéA particle is hopping to the sant particle
B particles, compared with four sites in two dimensions.site on average. When someB correlations develop there
Therefore the connectivity decreases more sharplg=il may be a higher density ok particles in the vicinity of a
as a function of thé density. Consequently diminishing the given B, which would in turn enhance the averageliffu-

B species random walk probability has a more pronouncedion rate.

effect in one dimension than ith=2. Figure 3 demonstrates that the predicted Gaussian distri-
bution Eq.(15) is not observed, despite the agreement in the
B. Pair annihilation 2B—0 time dependence of the mean-square displacement resulting

. . . . . . .. from the distribution. Compared to a Gaussian with matching

_Smce the_ crlt_lcal dimension for t# pa_trt|cle pair a_nn|h|- second moment, there is a distinct excess of essentially lo-
lation reaction |sdc_(2)=2, the mean-ﬂelq preQ|ct|oro5) calized particlegwith very small displacementswhich nec-
does not apply to either the one- or two-dimensional simulaggqq iy implies longer “tails” at large displacement values.
tions ex?ﬁgted. Ird_zl we expect according to E({_.?) A closer examination reveals that the simulation results for
pe(t)~t % and using qus/gls)_ and (16) the mean-field yho A particle displacement distribution agree over a large
approach sugges{(t),)~t"*. Figure 2 shows the simula- ange of displacements with the normalized exponential dis-
tion results(averaged over 20 rupor B pair annihilation in  ripution
one dimensior(system size 10 000with annihilation prob-
ability ©=0.5. At first theB density decays faster than Eq.
(7) predicts: initially the effective power law should be close
to the mean-field resufig(t)~t ! since the anticorrelations
described in Sec. Il develop only after some time haswvhereL(t) denotes a time-dependent characteristic length

Na(X,t)= %(t)ew“-(t), (28)
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scale. As will be discussed below, the distributi@8) obeys We may construct a simple model to accommodate such
dynamic scaling, so we determinédby matching the sec- variations as follows. Suppose the numbeBgfarticles, i.e.,
ond moment of this function with the simulation datatat the number of available hopping sites for tRespecies, is
=10000. As is evident from Fig. 3, the only significant de- decreasing proportional to some negative power of time, as
viations from this fit appear for particles with zero displace-is on average often the case in our simulations. If &).
ment and at the tails of the distribution, where simulationnglds, we find for the fractiofi of B particles that disappear
data contain greater error. . _ during a small time intervalit<<t:f(t)=agAt/t. Now as-

We can understand the qualitative features of this nongme that initially all of theA particles are diffusing ordi-
Gaussian distribution as a result of the low connectivity of 8narily with an effective diffusivityD, and then after each

one-dimensional lattice. In small regions where Blpar- g0 time intervalAt, a fractionf of the activeA particles
ticles have been annihilated, ti#especies are temporarily

thus lowering their effective diffusivity. Direct measurement tion will be a superposition of normalized Gaussians of in-

density dbcay. cleary incicates that particle anticorrlationSE351 Wicth but mulipled by a factor o be found recur
Y Y, y ! L p ively from the condition that the\ particle number be
have developed. These anticorrelations enhance the probabil-

) S : . . . conserved. More precisely, th=1 this distribution becomes
ity of finding substantial regions of ze® particle density. (with initial time t, and final timet=t,,, M>1):

However, as mentioned before in the discussion of the varia* 0 Mo TS

tion of theB particle random walk probability in Sec. IV A,
a significant part oA movements probably result from hop-
ping along with a particulaB particle through several time
steps(especially ind=1). Thus the effective diffusion coef-
ficient is (at least temporarilymuch higher for such par- tne prefactorsp(t,) are then determined by keeping the in-
ticles, and this effect contributes results in the longer “tails” tegral of P(x,t) normalized to unity=™ p(t)=1. Recur-

in the displacement distribution. We may think ofl@cal sively, oné thus arrives at pIEE(?)Zf(to), n(ty)

diffusion rateD(x,t) which is proportional to the distribution :f(tk)H}(;é[l_f(tj)] for 1<k<M—1, and at lasp(ty)

of available sited(x,t). Thus a particular particle will be :HJM:_Ol[l_f(tJ)] This picture assumes that the entire re-
subject to a temporally varying diffusion rate that depends omjion surrounding amA particle is depleted oB particles

its trajectory through the fielth(x,t), recall Egs.(12) and nearly simultaneously, and that this region is not subse-
(13), just as the diffusing particle’s trajectory must be con-quently visited by otheB particles. While this may be a
sidered for understanding diffusion on a static fractal. Thedecent approximation under the conditionBparticle anti-
distribution depicted in Fig. 3 suggests a sort of phase sepaorrelations, it is rather more difficult to justify in cases of
ration into different populations: many particles are primarilyemerging positive correlation@s we shall discuss below
subject to small diffusion rates, i.e., are mainly localized inwhen offspring reactions are introdugedHowever, even
regions with lowB density, while some others experience then someB clusters are eventually eliminated, leaving the
quite large diffusivitiegby remaining in areas of high local nearbyA particles localized, at least temporarily. Further-

2

1
exp —
(47Dt )Y? p( 4Dty

M
P(x,t>=k§0 p(ty) ) (29)

B particle densities more the activeA particles are diffusing normally with
The variation of localA diffusion rates is the result of (x(t)2)~t in their localB cluster until they become trapped.
inhomogeneities i(x,t) and the coupling that allows ak Applying this simplified model to the pair annihilation

particle to be carried along by a particular wandefgar- ~ system, we setrg=0.5, and we have chosén=0.2. We
ticle. Yet our earlier mean-field description for tAespecies then summed Gaussian distributions for simulation times
displacement distribution assumed that on average @ach ranging from t=5 to 100, localizing a fractionf(t)
particle evolves with an identical effective diffusion coeffi- = agAt/t at each integet. The result is depicted in Fig. 4,
cient; i.e., the total number of hops for ea&lparticle should after appropriately rescaling the axes to match normalization
be about the same. However, spatial inhomogeneities oveind the measured second moment of the simulation data.
scales larger than the distances traveled by tygigzdrticles ~ Apart from large deviations for small displacements, this
will cause the effective diffusivities for a particular time in- “continuous localization” fit appears to agree remarkably
terval to vary spatially in a noticeable amount. This effectwell with the simulation results. Indeed this generafedis-
should be especially pronounced in the case ofBhgair  placement distribution even begins to decrease more quickly
annihilation process because the emerging anticorrelatiorgear its tails, as may also be observed in the simulation data.
will leave many regions of space rather devoiBgfarticles.  The disagreement between the data and model may of course
A particles with larger effective diffusion coefficients prob- be traced to the simplifications assumed in its construction.
ably follow a particulaB particle for some time, since tie2  However, the error also might arise from choosing the initial
anticorrelations render them unlikely to be present in a redistribution: at the beginning of the simulation the number of
gion of high localB density. This distribution o8 density B particles decreases sharply before anticorrelations have de-
spatial fluctuations should persist to a large extent throughouteloped, and the above estimate for the fraction of localized
the simulation runs, which in turn should yield large varia-A particles is not valid forAt/t~1. Despite its shortcom-
tions in the average diffusion coefficient experienced by théngs, the model seems to capture most of the features we
A species. have observed in tha species displacement distribution. We
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FIG. 4. The results from the “continuous localization” model FIG. 5. TheB particle density and correspondin species
superimposed with the measured distribution of Aparticle dis- mean-s.qu.are displacement for the pair annihilation reactiBn 2

placements corresponding to the system shown in Fig. 2. The model ; . P .
reproduces the faster than exponential drop-off in the tails of the_’m with reaction probabilitys=1 in d=2. At long times, both

distribution, but still underestimates the fraction of highly localized plot§ indicate the expected logarithmic corrections to the mean-field
particles. The inset depicts the power-law increaséxgf)3) as scaling laws.
computed from the model.
tions to the mean-field result, viz., E@) for the B particle

also computed the time dependence of the mean-square digensity, and Eq(21) for the A species mean-square displace-
placement using the “continuous localization” model. Fol- ment. Simulations were also carried out at various values of
lowing a transient behavior, the inset in Fig. 4 shows for a two-dimensional system. Figure 5 illustrates the ap-
(x(t)2)~t>%5 close to the expected power law with-r,  parent agreement with the above predictions at long times for
=0.5 (which we also observed in the simulatjoBy trying  simulations run with annihilation probability=1 (averaged
a variety of ag values one can generate different approxi-over five runs on a 100100 lattice. However, such a large
mate power laws, but the measured subdiffughveisplace-  annihilation rate severely suppressesAhgarticle diffusion,
ment exponent was always found to be slightly larger tharso one should not really draw too firm conclusions from
l-ag. these measurements. We have again measured the corre-

To examine the non-Gaussian charactemg(x,t) fur-  sponding distribution of thé particle displacements. In Fig.

ther, we measured its higher moments as a function of timeg \ye see than,(x,t) is non-Gaussian and resembles its one-
Ind=1, Eq.(17) yields for the even moments of the mean- gimensional counterpatFig. 3), though the deviations from
field Gaussian distribution(x(t)3)=(2k—1)!1(x()2)*.  Eq. (15) are less pronounced. When<1, anticorrelations
While this factorization of hlgher moments still holds to the deve|0p over much |arger time scales and as the corrections
accuracy of our simulation data, we found the prefactgrs

=(x(t)3/(x(t)2)* in our measurements to differ from the
predicted values,=3, c;=15, andc,=105: we measured w
the considerably larger values,~5.5, c3~55, andc, 20 15 - - 20
~1100. These numbers are actually closer to the values oni
would obtain from the exponential distributi@@8), namely
c=(2k)!/2%, i.e.,c,=6, c3=90, andc,= 2520, but still off
by a factor of about 2 for the higher moments. Thus the
exponential fit cannot entirely describe the measured distri-
bution either. Nevertheless, the factorization property
(x(t)3%)oc (x(t)2)* found in the simulation data is significant,
for it indicatesdynamic scalingonce the time dependence of
the characteristic length scalet)=(x(t)2)Y2~t(1 22 js
factored out, the shape of the probability distribution should
remain constant in time. The distributior{¢5) and (28)
clearly display this feature. Since the probability distribution
is fully determined by all its moments, our measurements of F|G. 6. The measured distribution of the finalparticle dis-
the first four moments indicate that the trog(x,t) obeys  placements corresponding to the system shown in FigB Pdir
dynamic scaling as well. annihilation in two dimensionse=1), shown with Gaussian and
At d;(2)=2 one obtains the typical logarithmic correc- unnormalized exponential fits.

N
N

0.000001 - .
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FIG. 7. TheB particle density and correspondiny species
mean-square displacement for the triplet annihilation reactn 3  FIG. 8. TheB particle density and\ species mean-square dis-
—0 with x=1 in d=1, both displaying the expected logarithmic placement for the triplet annihilation reactioB3-0 («=1) ind
corrections to the mean-field scaling laws. =2, confirming the mean-field power laws.

o power law markedly faster than tiBeparticle density. As yet
are only logarithmic, foru=0.01 (20 runs on a 208200  we have no explanation for this surprising observation.
lattice) we merely recovered the mean-field results in the

regime accessible to our simulations. Though not shown

here, theB density decay was captured by the mean-field o . o

power law on the time scales of our runs, and Ahparticle The kinetics of quartic annihilation should be aptly de-

mean-square displacement followed the integral of that quaricribed by the mean-field rate equatio) in all physical

tity after some initial transient behavior. Accordingly, the ~dimensions sincal(4)=2/3. Settingn=4 in Eq. (5) we

particle distribution was essentially Gaussian in this situafhus expecpg(t)~t~**for sufficiently larget>r,. Accord-

tion. ing to Egs.(18) and(16), (x(t)2)~t¥% We ran simulations

in two dimensions on a 100100 lattice(with u=1, aver-

aged over 8 runsand found good agreement with these

mean-field scaling laws at sufficiently long times both for the
Next we consider the triplet annihilation reactior8 3 B particle density decay and thespecies mean-square dis-

—0. The upper critical dimension hereds(3)=1. Hence Pplacement. For the annihilation processes, langeralues

in one dimension we expect logarithmic corrections to thdmply longer crossover time scaleg sincen particles must

mean-field power-lavB density decay, as given in E¢9).  meet for a reaction to occur, see Ef). Indeed, by compar-

According to the simple mean-field picture, this leads to Eqing with the results for the triplet reactions, we noticed that

(22) for the A species mean-square displacement. Figure the time interval of transient behavior prior to convergence

shows our simulation result@veraged over 20 runs on a to the asymptotic mean-field power law was at least an order

lattice with 10 000 sites, annihilation probabiliy=1). We  of magnitude longer for the=4 system. As in the triplet

are able to clearly detect the logarithmic corrections even agimulations, the convergence to mean-field behavior oc-

w=1 since this reaction is a much slower process than pai¢urred faster for theA particle mean-square displacement

annihilation(requiring three particles to meet on a siffhe  than for the totaB density.

power-law regression ofx(t)4)/(Int)*? yields a value of 1

—a,~0.52, whereas the expected value is 0.50. Supposing- ACTIVE TO ABSORBING STATE PHASE TRANSITION

the mean-field result fully applies here, this gives an idea of AND LOCALIZATION

the overall precision of our simulation data. TAeparticle : . . S .

displacemeﬁt distribution also agrees well with tﬁ% predicte(él After this preliminary study with pur® annihilation ki-

D. Quartic annihilation 4 B—0

C. Triplet annihilation 3 B—0

Gaussian, apart from a slight excess of presumably localize gtics, we now turn our attention to the primary goal of our
»ap 9 P y mvestigation, namely anomalous diffusion on a dynamic

. 2\ . PRI
particles aroundx,) =0 and correspondingly longer “tails ._fractal (see Fig. 1. Each reaction discussed below exhibits a

of the distribution. Yet the deviation is much smaller than in ¢ i oys phase transition separating active and absorbing
the pair annihilation case because the anticorrelations are Ie§t°ationary states. At the critical point, tBeparticle distribu-

pronounced here.
Ford=2>d., the mean-field resul) should provide a
correct description, i.e., fon=3 in the long-time limitt

tion is known to be fractal in space and time. Thus the as-
sumption of a homogeneo®sparticle distribution is signifi-

N cantly violated, and we expect the mean-field description for
>13:pg(t)~t~ Y2 and (x(t)z) ~t*% Figure 8 demonstrates the A species propagation to be inadequate. Our aim has been
agreement with these mean-field predictions aftef @0 to measure and characterize the deviations from the mean-
fewer time stepgfrom 3 runs on a 108100 lattice with  field predictions. All of the phase transitions in tBearticle
againu=1). In fact, to our resolution the mean-square dis-system to be discussed here are described either by the di-
placement of theA species converges to the mean-fieldrected percolatioliDP) or parity conservindPC) universal-
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ity classes. The accepted critical DP exponents are listed ir 1 100000
Table 1. As mentioned in Sec. |, a PC phase transition is
observed ird=1 when\ =0 in the reaction schem@), and
m is even; in higher dimensions th@egenerate critical Pr
point occurs at zero branching rate and is governed by mean o.1 -
field exponent$7]. The PC exponents id=1 are also given
in Table I.

Knowledge of theB particle density behavior of these

0.833
N

<x,’>=055¢ L 10000

r 1000

<X4 Zs
r 100
ps =054¢"1

r 10

systems in the active and absorbing states near the phas g, ‘ ‘ ‘ 1
transition is also important, both in locating the critical point 100 1000 10000 100000 1000000
and for comparison with the asymptotic critical scaling laws. ¢

In fact, in simulations we will inevitably always be slightly ) ) , .
away from the precise critical control parameter values, F'G-9- TheB particle density and species mean-square dis-
However, in the vicinity of the phase transition we expect the?'acement for the DP reaction8—0 (A=0.01), B—2B (o
system to exhibit the critical power laws for some time in- ~ 0-8979): B0 (p=1) ind=1.

terval before crossing over to subcritical or supercritical be- . )
havior. The closer the system parameter values are to tH8ore than three decades, i.e,—ag~0.006. As we esti-
critical ones, the longer this critical regime lasts, as also sugMate the numerical uncertainty of the measured exponents to
gested by Eq(27), and the more precisely critical exponents be at least-0.01, we observe agreement both betwegn

can be measured. When is odd (independent of\), we and the DP prediction as well as betweeg and a, within .
expect systems in the absorbing state., dominated by an- OUr error bars. We also computed cha_l exponents, as defined
nihilation reactionsto exhibit behavior dictated by Ege), N Ed. (26) settingb=2. Figure 10 indicates that after fol-
the solution toB particle radioactive decay, with some effec- lowing some transient behavior,~0.158, in excellent
tive rate\ o4, dependent on, o, andu. To be more precise, agreement with the critical DP value. Thus we conclude that
let us consider reactiond) with m=1 andn=2 as is the OUr mean-flt_ald prediction of tha particle mean-square dis-
case in many of the situations examined below. Recalling?lacement time dependence works excellently for this reac-
that the branching reactions are locaffspring particles are tion at IeasF on the time scales we were able to access with
placed on the parents’ neighboring sjtés low dimensions ~ Our simulations. _

there is a significant probability that the parent and offspring !N Fig. 11 (inseb we demonstrate the algebraic depen-
will meet in the next few time steps after the branching re-dence of theB particle correlation function on particle sepa-
action and undergo pair annihilation. Together, the branchingation, indicating the spatially fractal structure at .crltlc_ahty.
and subsequent annihilation reactions generate the dgcay | he data were taken at50 000, averaged over nine simu-

—0, even ifA=0 on the outset. Generally, this is true when lations. The measured exponeng/2 agrees well with the
n=2 andm is odd. However, whem=2 andm is even, DP prediction 0.50 ind=1 over two decades. We remark

local parity conservation eliminates the possibility to generthat for small distances we observed that the correlation

ate “spontaneous” death processes. Thus in the PC univefunction scales a€g(|x|)~[x|~#"*, i.e., with precisely one
sality class the inactive phase is characterized by the powdlalf the asymptotic scaling exponent. The origin of this can
laws of the pair annihilation reactionsB2-0, whence in be understood as follows: at loB/particle densities, the site
subcritical systems one should asymptotically observe thccupation numben(x) is either zero or one; hence fox]
behavior given in Eq(7) with d=1. In the active phases of <& (N(X)n(0))=(n?)=(n)~pg~ ¢ #". The proportional-
both DP and PC systems, ti& density will approach its ity factor here must be a scaling functidigr/£), and de-
stationary value exponentially. This follows immediately manding that the dependence must cancel at criticality, we
from linearizing the corresponding mean-field rate equations.

0.22 -
A. Directed percolation universality class,d=1
0.2 - «—oag,DPA=0
To search for the DP transition in one dimension, we con-
sidered reactiongl) with m=1 andn=2, with A =0.01 and
. : : | ; 0.18 -
pn=1 fixed while ¢ was varied. Notice that setting=1 e &, ,DPA=0
eliminates the possibility of multipl® particles occupying M“\ //
the same site, so that tH# particle density exactly corre- 0.16 - \"\“ B LA~ ~ < 04,DPA=0.01
sponds to the density of available lattice sites Aoparticle \“wwN/M
hopping. According to the list in Table pg(t)~t~ %1% at 0.14 -
criticality, which implies within the mean-field approxima-
tion (ap=ag) that (x(t)3)~t>8*L Our closest estimate of  ¢12 ‘ . ‘

the critical point iso.~0.8975. Figure 9 shows the power- 0 50000 100000 ;150000 200000

law dependence gfg(t) and(x(t)3), obtained from 26 runs

on a lattice with 10000 sites. The double-logarithmic linear FIG. 10. The local exponent, corresponding to data shown in
regressions yield valuesg=0.161 anda,=0.167 over Fig. 9 (with b=2) and Fig. 14with b=4).
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035 - 0.1 agree well with a Gaussian distribution for intermediate dis-
’ Cp(x) placement values.
03] Yet it was in these fractal boundaries that we expected the
0.01 | deviation from the mean-field approximation to arise. One
0.25 1 possibility we had imagined is that particles in the bound-
CA(x)O_2 ] ary region are driven towards dend&regions owing to the
0.001 - particle density gradient expected from the formation of
0.15 4 clusters, thus destroying the spatial homogeneity of Ahe
01 - particles and resulting in a higher net diffusion rate than
00001 3 as_sumed by mean-fleld theory. ThIS behawor_can be distin-
0054 ™ guished by computing thé&-A particle correlations. If the
0. described large-scake-B coupling were strong enough, then
.’ 10 20 30 40’ ’50 we would expect to see sor_WepamcI_e correlations as they
-0.05 - x congregate in regions of higB density. But these correla-

tions were not observed, as demonstrated in Fig. 11. We may
attribute the inability of theB particles to induce significant
correlation in theA system to the low connectivity of a one-
dimensional lattice. Howeve€,(0) does indicate a signifi-
Cantly increased probability to find multiple occupation of a
given site. A weak negative correlation seems to have devel-
oped for 0<|x|<5. Such a distribution may be the result of
the “piggy-back” effect discussed earlier: severaparticles
pay in fact follow a singleB particle through a number of
ime steps. If theB particle is subsequently annihilated, the

: : ; - _ “piggy-backing” A particles are alltemporarily localized at
Figure 12 depicts the measured fliparticle displace their current site. The negative correlation may just be the

ment distribution at=50 000. It displays an excess of local- tion for the effecti tual attracti f
ized particles and corresponding long tails of the distribution,compensa ion for the efiective mutual attraction ot a group

similar to the pair annihilation case. But the deviation from amc nearhbyA pellrucles all foIIovgln%thhe sama. )
Gaussian distribution appears much less pronounced in thi% We have aiso _mea_lsured the higher moments 0””5‘
system. The power-law dependenceBaparticle spatial cor- P acemerzltk distribution nx(x,t). We found (x(t)x")
relations qualitatively suggests the observed distribution=Ck(X(1)a)", indicating dynamic scaling, albeit witl,
Such strong correlations yield macroscopic regions of rela=3:3, C3=20, andc, =185 compared with the values 3, 15,
tively largeB densities which ar particle may traverse and and 105 that would result from a Gaussian. A few distinc-
thus acquire a large displacement. However, such clustef#ns between the pair annihilation case and this DP phase
necessarily indicate compensating large regions of very loWansition may account for the significant differences in the
B particle density, where tha particles become highly lo- corresponding deviations from the mean-figlddisplace-
calized. TheA particles at the fractal “boundary,” which by ment dl_stnbu'uon. First, th& particle density decays much
its nature accounts for a significant fraction of the systenflower in the DP casea~0.16 as compared with 0.5).
Vo|umey appear to behave in accord with the mean-field preThlS slower decay may cause the DP distribution to be domi-

diction. This is suggested by the fact that the data in Fig. 127ated by the “active’A particles. For a fixed system size we
will also observe the DP system for longer durations. Since

the B particles undergo ordinary diffusion while reacting,
‘ these extended time scales imply that previously localized
400 regions(where the locaB density is zerp are likely to be
visited by wanderindd particles. Thus the localized portion
of the A particle distribution becomes smeared as thase
particles are reactivated, which makes it more likely that all
A particles experience roughly the same average effective
diffusion coefficient throughout the simulatigas assumed
in the mean-field approathFinally, at the DP phase transi-
tion, the B particles are positively correlated, whereas the
pair annihilation process induces negative correlations. Posi-
tive correlations may also contrive to weaken particle local-
ization, since thé\ species in regions of high locBldensity
400 are less dependent on sin@eparticles for their mobility. We
also note that as a consequence of the effective “slaving” of
FIG. 12. The measured distribution of tAeparticle displace- the A species by th@& particles, the correlation length expo-
ments corresponding to the system shown in FigD® critical ~ nentsv andv;=zv should be identical for both the active to
point for theB system ind=1, measured at=50 000). absorbing transition in thB system and the inducellocal-

FIG. 11. TheA andB particle pair correlation function§,(x)
and Cg(x) (insed at the DP critical point §=1, measured at
=50000).Cg(x)~|x| ~2#'" is approximately scale invariant. The
particles are very likely to be found on the same site, but there is
slight negative correlation with nearby siteS,(x) is essentially
zero at distancejx| > 10.

Q

obtain the aforementioned scaling law. As we are not pre
cisely at the critical point, we see a crossover to exponenti
decay at large distances.

0.01 -

-200 -100
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ization transition. Indeed, to the accuracy we could deter- 2000 4000 6000 f 8000 10000 12000
mine those exponents by means of E2jf) and the method  {,
described in Ref[15], this equality appeared to hold.

The expected time independence of the equal-haen- 200000 - <x,’>=020t >
sity correlation function and the extent of tBeparticle clus- <x,’>
ters explain the time independence of thedisplacement 100000 -
distribution. Recall that the origin of the non-Gaussian dis-
tribution is that theA particles experience different effective |
diffusivities depending on their location with respect Bo
clusters. What determines &k particle’s placement in the
distribution is the average diffusion coefficient experienced
over the length of the simulation, neglecting the possibility *Pp
of biased diffusion due t8 particle gradients. For the shape Fl-<xa(t)?>/<xf >
of the displacement distribution to remain constant in time,
the shape of the distribution of time-averaged effective dif-
fusion rates most likely remains constant as wellen while FIG. 13. A species mean-square displacement in the supercriti-
on average the effectivi species diffusion rate is decreasing cal and subcritical regimes for the DP processes of Figi9X).
with time). Subsequent measurement of tdiffusivity dis- For 0=0.910> 0., one finds normaA diffusion. In the subcritical
tribution supports this interpretation, see Fig. 27 in Sec. VIregime =0.890), theB particle density decays exponentially
below. This is only possible i particles are able to remain Wwith \¢~0.0002, and the mean-squakalisplacement approaches
in a denseB region for a large portion of the simulation, the asymptotic value exponentially with the same time constant.
made possib'e by |arge cluster sizes |mp||ed by the power(BOth subcritical datasets are rescaled to a unit prefactor.
law correlation function, while others remain in a low-
density region for long durations. These two persisting exan effective decay ratg .s~0.0002 (ten runs on a system
tremes maintain the non-Gaussian nature of Ahepecies  with 10000 sites Initially (for t<1000), a brief quasicriti-
displacement distribution. Howevek,particles at the fractal  cal regime is visible with power-law decay(t)~t~%?®and
boundary, which comprises a considerable volume of th%orrespondingl;(x(t)i)~t°-77. Fort>2000 we then observe
system and thus contains a large fraction of #hparticles,  eyponential convergence j&;=0 and the stationary value
may all see roughly the same effective Qn‘fusmn rate over theror <x(t)i>, both with the same time constaxg;~0.0002.
length of the simulation, which results in the Gaussian mid  5q discussed above, we expect the macroscopic properties

region ofna(x,t). Furthermore, the stationarity of the shape ¢ the pp phase transition to be independent of the value of
of the distribution of effectiveA diffusivities is likely the ¢, 4<2 aven persisting ta. =0, i.e., the absence of

reason we see such good agreement betwgeandag . FOr - ghontaneous decay. To check this, we ran simulations for
instance, even if the global average instantaneous d'ﬁus'orbactions(l) with m=1 andn=2, settingh=0, x=1, and

rate evolved ad(pg(t)) (as we should expegta changing  varying o. We estimatedo,~0.8930, slightly below the

distribution shape, such as increasing enhancement of thgyjue found when =0.01. Figure 14 demonstrates the criti-
phase separation between “localized” and “active” regions cal behavior deduced from data taken over more than three
while maintaining the proper global diffusion rate, would
induce additional time dependence and cause deviations
from Eg. (18). However, we have no precise argument for
the apparent time independence of these distributions.

We also sought to verify the predicted behavior away
from the phase transition. Setting=0.910, sufficiently

supercritical

t 500000 1000000

subcritical

1 100000

r 10000

2
above the critical branching rate, we observed almost imme-pB S
diate convergence of th# particle density to its active state 0.1 - - 1000
saturation valugs=(pg(t))~0.26, with standard deviation
0.009. As expected and depicted in the inset of Fig. 13Athe
species then exhibits normal diffusior{=0). (The slight —<x,’ > =050 - 100

deviation at the end of the single run on 10 000 sites may be
a finite-size effecj.By Eqs.(18) and(16) we also expect the 0

~ . ~ .01 ‘
prefactor to be P pg, wherefrom we estimat®~0.39. For 100 1000 10000 100000 1000000
ordinary diffusion, in the absence of any correlatiois,

=0.5. Indeed, our algorithm dictates choosing a hopping di- £, 14. TheB particle density and species mean-square dis-
rection first, and then checking for the presence & par-  placement for the DP reactiofisranching and annihilating random
ticle at the destination site. Thus on average one of twQualks with odd offspring numbgrB—2B (o=0.8930) and B
neighboringA particles will hop to @B site. To observe sub- —.p (x=1) in d=1. Fort<200000, the critical power laws are
critical behavior, we setr=0.890. Figure 13 illustrates the observed. Subsequently a crossover to subcritical behavior can be
convergence to the expected exponential density decay witkeen.
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0.1 1000 0.5 -
»
0.49 -
<x,2>=051t"" 5 *a .
Ps - 100 0.48
2 ‘.0.
<X4 > 0.
0.01 047 4 %,
»
»
- 10 0.46 “~
*
0.45 -
0‘m1 T T 1 044 T T T T 1
100 1000 4 10000 100000 0 5000 10000 ¢ 15000 20000 25000
FIG. 15. TheB particle density and\ species mean-square dis- FIG. 16. The local exponenti, corresponding to data shown in

placement for the DP reactionB—0 (A=0.01), B—2B (o Fig. 15 (with b=2).
=0.2233), B—0 (u=1) ind=2.

D=0.256, very close to the expected 0.25 from ordinary
decadeq20 runs in a lattice with 20000 sitesbefore the diffusion in two dimensiongsince on average ok particle
transition to subcritical behavior becomes evident. We foundvill hop to each available site). The slight error in com-
ag~0.158, in superb agreement with the expected DP valuputingD is probably a result of the transient behavior at the
0.159. We measured,=0.157, soag— ap~0.001. Again  beginning of the simulation, where thHg density is still
any significant deviations from the mean-field prediction atlarger than what the power-law fit would predict. Figure 16
the critical point, if present at all, must arise at time scaleshows the local exponent, (computed withb=2), indicat-
inaccessible to our simulations. ing that the system is indeed subcritical,@sis increasing

However, the local exponents, andag, settingb=4 in  with time for larget. But the minimum plateau value is very
Eqg. (26), turned out not to be constant. In the regime fromclose to the predicted,~0.45. Figure 17 demonstrates that
which we inferred the global values afy, the local values the B particle distribution is still fractal at=50 000, yield-
oscillate about their averages by0.01, whereas the local ing an effective exponent valueB2v close to 1.59as ex-
ap is a much smoother function in timesee Fig. 1@ The  pected from DPat intermediate distances. Figure 18 depicts
steady increase i, (and ag) indicates that the system is the A species displacement distributiontat50 000 together
actually in the inactive phase. We found the increase in thevith the mean-field Gaussian and @mnormalizedl expo-
local ag exponent to be significantly faster. However, this isnential fit of the distribution tails. As in previous cases, the
not an indication of deviation from the mean-field prediction“tails” of the distribution are longer than a Gaussian would
for the mean-square displacement of #hespecies. We, in suggest, and instead appear to be matched well by an expo-
fact, computed numerically the integral of tBeparticle den-  nential.
sity and compared it with the measured mean-sqadés- At last, we verify the DP transition in two dimensions
placement. We found that far>10 000, the error between when\=0, and compare thA particle anomalous diffusion
the two measurements was less than 1%. We estinfated to the nonzera case, using the same reaction rates as before
=0.39 for this reaction in order to obtain the best matchin d=1. Becausexg is so large for DP ird=2, we had to
between the measured mean-squardisplacement and the Use quite sizable systems (80800) to measure exponents
integral of pg(t). This value is in good agreement with esti- over several decades in search of the critical point. Thus our
mates from other reactions. Both tBeand A particle corre-
lation functions and thé\ species displacement distribution 0.001
were basically identical to Figs. 11 and 12.

100 1000

L

. . . . 0.0001 - .
B. Directed percolation universality class,d=2 MRS

To investigate the properties at a DP transition in two Cat)
dimensions, we used the same reactions and rates ds in  0.00001 -
=1, namelyB—0 (A=0.01), B—2B (varying o), and
2B—0 (u=1). Ford=2, Table | predictspg(t)~t~24°%
which implies, according to our mean-field description, that 0.000001 -
(X(t)2)~t%%*% Our best estimate of the critical branching
rate iso.~0.2233. Figure 15 shows the power-law depen-
dence ofpg(t) and (x(t)3), inferred from 40 runs on a
800X 800 square lattice. The initi#d density was set to 0.01 FIG. 17. TheB particle pair correlation functio€g(x) at the
(as opposed to the usual 0.5) here. The power-law fits implypP critical point =2, measured &t=50 000).

0.0000001 -
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FIG. 18. The measured distribution of tAeparticle displace- FIG. 19. TheB particle density and\ species mean-square dis-

ments corresponding to the system shown in Fig(DPB critical ~ placement for the PC reactiois—3B (0=0.2175), B—0 (u
point for theB system ind=2, measured dt=50 000). The dashed =0.5) ind=1.
line indicates a Gaussian fit, and the solid line represents an unnor-

malized exponential fit to the distribution tails. We also observed the critical behavior for the PC reac-
o ) ) tions 2B—0 (u=1) combined withB—5B. Settingu=1
determination ofo. was not as precise. For ttig particle  pejps to minimize the number of necessary random numbers,
density andA species mean-square displacement as functiongs well as prohibits the multiple occupation of lattice sites
of time, the measured exponents arg~0.47, approxi- and thus avoids discrepancies betweenBhmrticle density
mately 0.02 larger than the DP value, ang~0.48. We  and the density of available sites for tAespecies. In Fig. 21
found our system close to but below criticality, and thereforewe display theB density andA species mean-square dis-
observed time-dependent local exponeafsand ag. We  placement as a function of time near the phase transf&ion
also completed fewdR0) runs for this system, and so expect o.~0.2795), implyingD = 0.50 (averaged over 20 runs on
a larger error on our measurfments of the exponents. Th@e |attice with 60000 sit¢s Indeed we again find good
power-law fit prefactors implyD~0.29, in fair agreement agreemenivg~0.274~a,, as well as with the simulation
with our expectation of 0.25 and previous measurements. ldata depicted in Fig. 19, and the predicted PC value. In ad-
summary, we have not uncovered any significant deviationgition, we measured tha displacement distribution at three

from the behavior observed far>0. distinct times:t=50000, t=100 000, andt=600000. By
scaling the ordinate by a facte=(t,/t;)*~ %42 and the
C. Parity conserving universality class,d=1 abscissa by #/ the three curves are seen to be essentially

d’dentical in shape, see Fig. 22, which supports the dynamic
écaling conjecture that th& particle distribution maintains

its shape as it evolves in time. In Fig. 23 we show the paths
of five A particles in one of the simulations contributing to
the data in Fig. 21. The selectédarticles are those with the

In order to observe the phase transitions from active t
inactive/absorbing states in the PC universality class, w
looked at branching and annihilating random walks with
even number of offspring patrticles, i.e., 3et0, n=2, and
eitherm=2 or 4 in the reaction schem@). In the former
case, B— 0 combined withB— 3B, we were forced to set

the annihilation probability tqu=0.5 in order to detect the 0.01 + X ,
phase transitioffat varying branching probability). Figure ‘. . 10 1000
19 shows the power laws for thiparticle density decay and Ceen,

the A species mean-square displacement as a function of timCs®
near the phase transitigat o,~0.2175). Our measurement
of ag=0.269 agrees fairly well with the expected PC expo-
nent 0.285(from 20 runs, each with 60000 sile$-urther-
more, ap=0.271 is in excellent agreement witlig. The

power-law fits shown implD = 0.45 for this reaction. Figure 0.0001 1
20 depicts a measurement of tBedensity correlation func-
tion att=50 0000, and the predicted PC exponent ratio 1.15
according to Table I. Measurements ©f(x) at t=50 000
and t=100000 yielded distributions very similar to that
shown in Fig. 20. Figure 1 shows a space-time plot for these
reactions illustrating the fractal nature of the process at criti- FIG. 20. TheB particle pair correlation functio€g(x) at the
cality. PC critical point ind=1 (measured at=500 000).

001 +

0.00001 -
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0.1 10000 t
Lpp=038¢07" 0 1000000 2000000 3000000 4000000 5000000
300 L L L L

Pr - 1000
<x,’>
- 100

T<x,? > =052¢"
0.01 - ; . - 10
100 1000 10000 100000 1000000 -500
t FIG. 23. The paths of the fivA particles with largest displace-

ments in a simulation contributing to the data plotted in Fig. 21.
Notice the long intervals of particle localization interspersed with
brief periods of high mobility.

FIG. 21. TheB particle density and\ species mean-square dis-
placement for the PC reactiois—5B (0=0.2795), B—0 (u
=1) ind=1.

greatest displacements. The trajectories consist of periods 811 near the PC phase transitiondr=1. As would be ex-

localization(very little activity) interspersed with periods of pected, the time dependence of the mean-square displace-

much movement. This diagram resembles those for otherinent of th_eA Species agreed with the integral of tBepar-
cases of anomalous diffusion such as Levy flights. We aIstB'Cle .densny .W'th the gbsolute error bgunded by 10. The
examined a subcritical system, setting=0.277. Figure 24 required choice for this agreement was=0.95, a puz-
shows an initial critical regime withg(t) ~t %28 crossing zllnglz large value, considering all previous observations
over very quickly to the subcritical behavior dominated bygaveD~0.5. Since in this algorithm thB particles are not
pair annihilation pg(t) ~t~ %% We see that throughout these being continuously created and annihilated,ARB coupling
regimes the mean-square displacement of Ah@articles is actually stronger, and thus on average there is probably a
agrees remarkably well with the integral of tledensity, higher density ofA particles surrounding a typicd site,

settingD = 0.425(from seven runs, each with 40000 sjtes thereby increasing the effective diffusivity. We may now

To uncover the origins of the non-Gaussian distributionscompare theA displacement distributions at=100 000 for
observed in the systems thus far examined, we also consi@€ homogeneous and true PC systems, see Fig. 25. Different
ered a simple model in which tH# particle distribution re- ~ effective diffusivities required an area-preserving rescaling.
mained uncorrelated, while still exhibiting the desired over-While there does appear to be some deviation from a Gauss-
all density decay_ The a|go|’ithm allowed t&species to lan evenin the artificial model, the f|gUreS suggest that the
diffuse through the lattice without site exclusion, but re-deviation is not as great as in the true PC system Bith
moved sufficiently many of them at random so that the particle correlations. Though not shown, a rescaled version
density followed the prescribed global behavior. For ex-

ample, we forced th& density to decay as observed in Fig. o1 10000
610 0006 600 o
5
o .
— 5x10
------ Gaussian0 5 Gfi L
«2D  ['pp(t)ar
6x10° N\ o,
+1x10° % 10
«5x10° l<x,%>-2D Jipp()ar1 T
10° .
------ Gaussian
0.001 T T T 1
n 100 1000 10000 100000 1000000
I T v T U 1 t
-300 -100 100 300 500 700

FIG. 24. TheB particle density and\ species mean-square dis-
FIG. 22. The measured distribution of tieparticle displace- placement for the PC system of Fig. 21 in the subcritical regime
ments corresponding to the system shown in Fig.(RC critical (0=0.27K 0.). The crossover from the critical power laws to
point for theB system,d=1) at different times as indicated. those of the inactive phase is clearly visible.
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o ) ) FIG. 26. The measurefl species displacement distributions for

FIG. 25. The measured distribution of tAeparticle displace- ¢ majority of systems investigated héRA and TA represent the
ments corresponding to the system shown in Fig.(RC critical  preB particle pair and triplet annihilation processes, respectively
point for the B system,d=1), compared with the one resulting \ye see that most of the data collapse to roughly the same scaling
from the artificial model with uncorrelatedl particles. Notice that  ,nction (except for the result for one-dimensiorBpair annihila-
different effective diffusivities were applied to obtain equal secondijon with the strongest anticorrelationdhe observed distribution
moments. clearly deviates from the mean-field Gaussian both at small and

large displacements.

of the radioactive decap displacement distribution agrees
well with the *“artificial” distribution shown here, as one ized particles being removed from the computation had
might expect. We suggest that the low connectivity of thelower effective diffusion rates than the remaining active par-
one-dimensional lattice necessarily causes significant devidicles, overall increasing the mean-squaedisplacement.
tions from the average effective diffusivi(pg(t)) for the ~ This observation supports the hypothesis that the effective
A species, which then yields a non-Gaussian distribution o_fJIfoSIOH rate for theA species Is not unlform, Indlcatmg.that
the A particle displacements. However, Fig. 25 demonstratet the previous models, a significant fraction of thepecies
that B particle correlations are also significant in producingWas localized over time scales at least as large as 10000
deviations from the mean-field prediction. Mopte Carlo steps. Thus moAt particles are not truly dif-

We also explored a few other algorithms to verify that Ourfusmg through the dynamic fractal, but_ rather execute an
results were not particular to our implementation. First wePCcasional hop when passed overtbparticles.
adapted thé\ species hopping algorithm, so that whenever
an A particle could hop, it would with probability 1. Previ- VI. CONCLUDING REMARKS
ously, A particle hopping was implemented by choosing a
direction to hop, and then checking to see if the destinatioQji
nearest-neighboring site was occupied by garticle. We
executed the maximah particle hopping algorithm fowr

20'2795'. our best estimate of the critical point for the PCclusters. We found excellent agreement for all examined sys-
system withm=4. The time dependence of the mean par-

ticle displacement agreed very closely with the integral Ofssimsthoef i:]t(;gr ;Ipc?fc'lﬁz ﬂ::;-;s)glrjt?crlz 3gsr|?§&em?§t>t)a
. . - o PB y
Ejri]sepllaacrz):rr:g:i ?}I?sr;zgﬁtigghgoi_n?:iggd Avtnttﬁ iﬁgto?r? IE?SA 29 least within the accuracy of our data. However, the mean-
. . "~ field Gaussian distributioil5) for the A particle displace-

apart from a scahpg fagtor o acc?ount for Fhe discrepancy Tents was not observed. We have argued that the primary
D. The increase in this value simply indicates thapar-  factor in creating this deviation is a variation in the effective
ticles will hop whenever a neighboring site is available. gjffusion rate of theA particles, which is proportional to the

Next we evolved thd particles untilt=500, when th8  nymper of hops executed by @nthroughout the simulation
density was down to 0.07. Thus clusters and relatively vacaryn. The shape of the resultingy displacement distribution
regions should have begun to form. The algorithm thenyas seen to be the same at different times and also over
pIaqedA particles on the existing particles and studi_ed the many different systemee Fig. 2§ thus suggesting that the
A diffusion thereafter. Though after a longer transient, theyistribution shape of effective diffusion rates also remains
mean-squaré displacement approached the integral ofEhe  the same over different time scales and systems.
density(settingD =0.5). Finally we examined an algorithm The contributing factors to producing the diffusion rate
that removedA particles from the system after they had beendistribution were identified as persisting spatial fluctuations
localized for a certain time intervghere chosen as 10000 in the local B particle density(enhanced in situations with
Monte Carlo steps We found the number of activA par-  strongB correlation$, the low connectivity of the one- and
ticles to be a sharply decreasing function of time. The localtwo-dimensional lattices examined here, and the fact that the

We have numerically investigated the reaction-controlled
ffusion model introduced in Ref8] for variousB species
reaction systems, and studied the ensuing anomalous diffu-
sion for theA particles on the emerging dynamic fracl
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0.09 - 1 ‘ dimensionalB pair annihilation with its strong anticorrela-
¢ 10000 tions, all distributions appear to at least approximately col-
0.08 1 L 2<D4(1)> lapse to the same scaling function. As we have seen
n, 0071 previously, compared with a Gaussian this common distribu-
0.06 0.1 - tion features an excess of particles both in its “tails” and
005 | Ut o[ pp(t)dr T peak. For the one-dimensional pair annihilation case these
’ deviations are markedly enhanced. We find this apparent uni-
0.04:1 versality in theA particle displacement distribution quite sur-
0.03 - b= Ti3060 001 - prising. Yet in each case d_epicted iq Fig. 2_6, 'cprrela.tions
0.02 | S e IS0 developed between th particles, leading to significant in-
001 | ¢ = 100000 & homogeneities in their spatial distribution.
) ot = 200000 However, assuming that th&-B coupling is sufficiently
0¥ ‘ ‘ ‘ weak that approximaté spatial homogeneity is maintained,
0 0.1 022 s DA>0t.3 04 0.5 the distribution of the time-averaged effectigediffusivities

is constrained by the global valli2(pg(t)). We compared
FIG. 27. The distribution of effectiva diffusivities, obtained as  these quantities for a one-dimensional DP systsgstem

the average number of hops per unit time, at various times duringize 10 000, ten runs witk=0.01) and indeed saw excellent
simulations for critical DP processes for tBesystem ind=1. The  agreement at long timgsee the inset of Fig. 27indicating
inset shows that the average diffusion coefficient becomes identicahat at each time step on average @ngarticle hops to each
with the temporal average of tH species density. The diffusion B sjte. The discrepancy at small times can be attributed to
rate distributions are rescaled to the same average for better coraymerical errors in computing the integral. Apparently the
parison. time-averaged diffusion rate distribution over thgarticles

is common to the bulk of the reaction systems studied here.

To address the apparent universality in systems of positive or
A species tend to be carried along with diffusiBgarticles ~ weak (but existing B species correlations, we should note
(the “piggy-back” effech. As mentioned above, the distribu- that localization, by which we mean the annihilation of the
tion of effective diffusivities is constrained in that the aver- nearestB particle to the newly localized, is often imper-
age diffusion rate should eqUﬁ'(PB(t»- The evolution of mar)gnt when the\ res@es in aB cluster that results_ from
this average diffusion rate accordingtt@lf})pB(t’)dt’ (see positive correlations. Figure 27 shows the effectivéiffu-

Fig. 27 coupled with the time independence of thalistri- ~ Sion rate distribution ~at various times for the one-
bution shape, i.e., dynamic scaling, essentially yields th imensional DP system. The distributiontat10 000 is still

. . . - airly peaked, which may be accounted for by the initial high
mean-field time behavior ofx,(t)), Ea. (18). Also, as the density ofB particles leading to homogenization of the dif-
mean-square displacement is an integral quantity, the noi

sion rates. The distributions at later tim@saled to match
associated with fluctuations in ttBeparticle density pecomes the average value of the=10000 distributioh seems ap-
suppressed. Consequently,.und'er the assumption djat proximately constant, though perhaps the peak is slowly
= ap 10 a very good approximation at least, one may meagpiging towards smaller values. Finally, we note that the
sure critical exponents of the reactiBgparticle system via

the passiveA species using fewer simulation runs and with measured values db were approximately the same for all

reduced statistical noise. systems, namel\D~0.5 ind=1 andD~0.25 ind=2.
Fluctuation effects really become manifest in the higher
moments only, and in the overall shape of fhdisplacement ACKNOWLEDGMENTS
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