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Reaction-controlled diffusion: Monte Carlo simulations
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We study the coupled two-species nonequilibrium reaction-controlled diffusion model introduced by
Trimper et al. @Phys. Rev. E62, 6071~2000!# by means of detailed Monte Carlo simulations in one and two
dimensions. Particles of typeA may independently hop to an adjacent lattice site, provided it is occupied by at
least oneB particle. TheB particle species undergoes diffusion-limited reactions. In an active state with
nonzero, essentially homogeneousB particle saturation density, theA species displays normal diffusion. In an
inactive, absorbing phase with exponentially decayingB density, theA particles become localized. In situations
with algebraic decayrB(t);t2aB, as occurring either at a nonequilibrium continuous phase transition sepa-
rating active and absorbing states, or in a power-law inactive phase, theA particles propagate subdiffusively

with mean-square displacement^xW (t)A
2&;t12aA. We find that within the accuracy of our simulation data,aA

'aB as predicted by a simple mean-field approach. This remains true even in the presence of strong spa-
tiotemporal fluctuations of theB density. However, in contrast with the mean-field results, our data yield a

distinctly non-GaussianA particle displacement distributionnA(xW ,t) that obeys dynamic scaling and looks
remarkably similar for the different processes investigated here. Fluctuations of effective diffusion rates cause

a marked enhancement ofnA(xW ,t) at low displacementsuxW u, indicating a considerable fraction of practically
localizedA particles, as well as at large traversed distances.

DOI: 10.1103/PhysRevE.68.046121 PACS number~s!: 05.70.Jk, 05.40.Fb, 64.60.Ht, 82.20.2w
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I. INTRODUCTION

The goal of statistical mechanics is to understand the
lationship between microscopic and macroscopic dynam
in systems consisting of a large number of degrees of f
dom. One classical success of the equilibrium formalism
the prediction of universal phase transition behavior: in
pendent of the microscopic details of their interactions, s
tems with identicaloverall features, governed by their sym
metries, spatial dimensiond, and perhaps large-sca
interaction properties, display very similar phase diagra
Moreover, their critical points are characterized by the sa
small set of independent scaling exponents. Thus phys
systems with very complicated interactions can often be
equately described by considerably simplified models, wh
in turn form the basis of simulation studies and numeri
analysis.

Here we investigate a simple coupled reaction-diffus
system, which however leads to remarkably rich featu
More specifically, the spatiotemporal fractal structur
emerging at anonequilibriumcritical point of a reacting spe
ciesB impose nontrivial scaling behavior onto the propag
tion of passive random walkersA, whose propagation is
however limited to sites occupied by at least oneB particle.
One may envision this system to model virus~represented by
the A particles! propagation in a carrierB population that is
set close to its extinction threshold; the virus remains d
mant when there are noB organisms present. Below, we sha
encounter and characterize the ensuing scaling laws
means of Monte Carlo simulations, and compare our num
cal results with the predictions of a mean-field approxim
tion.
1063-651X/2003/68~4!/046121~19!/$20.00 68 0461
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In nonequilibrium systems, the detailed balance con
tions are violated; i.e., the probability of at least one clos
loop of transitions between microscopic configurations
pends upon the direction the loop is traversed. This is
case even in stationary states in open systems, through w
a steady particle or energy current from the outside is ma
tained. Outside physics nonequilibrium models may d
scribe, for example, population dynamics, chemical cata
sis, and financial markets. Yet reassuringly, univer
behavior has also been found to persist for nonequilibri
models that display phase transitions between different
tionary states.

Prominent examples are continuous transitions betw
active and inactive/absorbing states in diffusion-limit
‘‘chemical’’ reactions @1#. The class of models we will be
studying involves competing annihilation and offspring rea
tions of a single speciesB, performing unbiased random
walks on ad-dimensional hypercubic lattice:

B→
l

0” ,

B→
s

~m11!B,

nB→
m

0” ~1!

with integersm>1, n.1. For large branching rates, the
system is in an active state with a nonzero and essent
homogeneous particle density. In contrast, when the de
processes with ratesl andm dominate, theB particle density
reaches zero, and the dynamics ceases entirely in this i
tive, absorbingstate. By appropriately tuning the reactio
©2003 The American Physical Society21-1
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rates a continuous phase transition between these two
tionary states can be observed@2#.

Generically, such transitions fall into thedirected perco-
lation ~DP! universality class@3# with upper critical dimen-
siondc54. The standard example is represented by the G
bov processB→0” , B
2B. Equivalently, one may use
scheme~1! with m51 andn52. Directed percolation was
initially devised to characterize the transition from finite-
infinite-sized clusters in directed media~such as a porous
rock in a gravitational field! @4#. Other applications include
certain models of catalytic reactions, interface growth, tur
lence, and the spread of epidemics@5#. Experimental evi-
dence for DP critical behavior was recently observed in s
tiotemporal intermittency in ferrofluidic spikes@6#.

For active to absorbing state phase transitions in sin
species reactions that include first-order processes, in the
sence of memory effects and quenched disorder, the
called parity conserving~PC! universality class appears t
represent the only scenario for non-DP critical behavior@1#.
In the above reaction scheme~1!, PC scaling is observed fo
branching and annihilating random walks withl50, n52,
andevenoffspring numberm. In that situation, reactions ei
ther create or annihilate an even number of particles. T
the number of B particles remains either even or od
throughout the system’s temporal evolution. Indeed, the
tinct nontrivial scaling exponents of the PC universal
class, albeit limited essentially tod51, can be attributed to
this special symmetry of local particle number parity cons
vation. Moreover, ford<dc8'4/3, fluctuations cause th
emergence of a power-law inactive phase, characterized
the algebraic decay laws of diffusion-limited pair annihil
tion 2B→0” (l5s50,n52) @7#.

Whenl.0 or m is odd~for n52), however, parity con-
servation is destroyed. The casel.0 immediately yields a
transition in the DP universality class withdc54. Yet for
odd m, even if l50 initially, fluctuationsgeneratesuffi-
ciently strong decay processesB→0” in d<2 dimensions to
produce a transition to an inactive phase with DP criti
exponents. Forl50 andd.2, one encounters only an ac
tive phase for anys.0, as predicted by the mean-field ra
equation@7#.

At the nonequilibrium continuous phase transition, the
acting particles form spatiotemporal fractal structures ch
acterized by algebraic decay of the correlation functions~one
example is depicted in Fig. 1!. In Ref.@8# it was suggested to
employ thesedynamicfractals of reacting agentsB as back-
bones for nearest-neighbor hopping processes of ano
otherwise passive, particle speciesA. TheA particles are then
allowed to move to a nearest-neighbor site only if that site
occupied by at least oneB particle. In an active state of theB
system, with a largely homogeneous particle distribution,
A particles follow Fick’s normal diffusive propagation law

^xW (t)A
2&52Dt, with diffusion constantD;a0

2/t0, wherea0

denotes the lattice constant of the hypercubic lattice, andt0
21

the microscopic hopping rate. On the contrary, in a DP-ty
inactive phase with an exponentially decayingB particle
density, theA species will become localized, i.e.,^xW (t)A

2&
→const ast→`. In precisely this sense the inactive to a
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tive state transition of theB system thus induces alocaliza-
tion transition for the A particles. At the transition itself, a
well as in the PC-inactive phase, theB density decays alge
braically,

rB~ t !;t2aB ~2!

with 0,aB<1. Correspondingly, theA species propagate
subdiffusively,

^xW~ t !A
2&;t12aA, ~3!

where again 0,aA<1. In fact, a simple mean-field ap
proach suggestsaA5aB @8#. Our goal here is to further elu
cidate the scaling laws for the ensuing anomalousA particle
diffusion through Monte Carlo simulations in one and tw
dimensions. We shall also numerically determine the f
time-dependent probability distribution for theA species dis-
placements and compare it with the Gaussian distribu
predicted by mean-field theory@8#.

Before we proceed, we note that our model is related
but quite distinct from, studies of anomalous diffusion
static fractal structures. These have been used to descri
variety of physical phenomena, such as percolation thro
porous or fractured media and electron-hole recombina
in amorphous semiconductors@9#. Anomalous diffusion may
also ensue for particle transport in a random medium w
quenched disorder, provided the obstacles are sufficie
strong to effectively reduce the number of diffusive paths
large length scales@10#. We emphasize again that in the sy
tem under investigation here the fractal structure evolvesdy-
namically, which provides an alternative mechanism for su
diffusive propagation. When Eq.~2! holds, the number of
available paths decreases with time. Yet notice thatA par-
ticles that have become localized on an isolatedB cluster for
some time may still become linked to a large connected
gion of available sites later.

In Sec. II we briefly review the theoretical consideratio
of Ref. @8#, and list the central results from the mean-fie
approach for theA species propagation on the dynamicB
fractal. In Sec. III we give an overview of the Monte Car
simulation methods employed in our study. Next, in Sec.

FIG. 1. Space-time plot for the one-dimensional reactionsB
→3B, 2B→0” at the active/absorbing critical point~PC universality
class!.
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TABLE I. Critical exponents for the parity conserving~PC! and directed percolation~DP! universality
classes of active to absorbing phase transitions, as determined from Monte Carlo simulations in one
dimensions@2#. Here, r denotes the deviation of a relevant control parameter from the critical point.
directed percolation, the first-order results from thee expansion neardc54 dimensions are given as well.

Critical exponents PC,d51 DP,d51 DP,d52 DP,d542e

rs;ur ub b'0.92 b'0.276 b'0.584 b512e/61O(e2)
j;ur u2n n'1.84 n'1.097 n'0.734 n51/21e/161O(e2)
tc;jz;ur u2zn z'1.75 z'1.581 z'1.764 z522e/121O(e2)
rc(t);t2a a'0.285 a'0.159 a'0.451 a512e/41O(e2)
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we first present our results for the anomalousA diffusion as
induced by pure annihilation kinetics of theB species (s
50). Section V is devoted to the central issue in our inv
tigation, namely the subdiffusive behavior of theA particles
at the localization transition caused by the active to inact
absorbing phase transition of the reacting agentsB. We sum-
marize our results in Sec. VI, add concluding remarks, a
point out a few open problems.

II. THEORETICAL PREDICTIONS

For the specific combination ofB particle reactions stud
ied here, the asymptotic scaling behavior is well understo
In particular, we shall consider both systems with pure an
hilation kinetics (nB→0” ), and models with competing ann
hilation and offspring reactions, as listed in~1!, in the vicin-
ity of their nonequilibrium phase transition from active
inactive, absorbing states. These phase transitions eithe
into the directed percolation~DP! or parity conserving~PC!
universality class, both of which have been previously inv
tigated in detail@1#. Specifically, the exponentsaB charac-
terizing the long-time decay of the particle density are w
established through simulations~see Table I!.

Let us first consider pure annihilation kinetics with rea
tion ratem. The corresponding mean-field rate equation
the B particle density reads

] trB~ t !52nmrB~ t !n. ~4!

For n.1 this yields

rB~ t !5
rB~0!

~11t/tn!1/(n21)
, tn5

rB~0!12n

n~n21!m
, ~5!

whence at sufficiently large timesrB(t);(mt)21/(n21), in-
dependent of the initial densityrB(0). Forn51, i.e., spon-
taneous death with ratel, one naturally finds exponentia
decay,

rB~ t !5rB~0!e2lt. ~6!

We expect these results to be valid~at least qualitatively!
in dimensions above an upper critical dimensiondc , which
can be determined through straightforward dimensio
analysis: since theB particles undergo ordinary diffusion, w
expect @ t#5@x#2, and of course ind dimensions,@rB#
5@x#2d. Then by Eq.~4!, @m#5@x#d(n21)22. Thusm is di-
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mensionless~marginal in the RG sense! at dc(n)52/(n
21). The mean-field description~4! fails in lower dimen-
sions where there is a non-negligible probability that a p
ticle will retrace part of its trajectory. Forn52,3 anticorre-
lations between surviving particles are induced
dimensionsd<2 andd51, respectively, since many of th
nearby particles along a specific agent’s trajectory are a
hilated in the first trace. The annihilation processes then
come diffusion limited rather than reaction limited. For th
pair process, the particles need to traverse a distance,(t)
;(Dt)1/2 before they can meet and annihilate, whereD de-
notes theB particle diffusion constant. Hence the partic
density should scale asn(t);,(t)2d;(Dt)2d/2. Indeed, a
renormalization group analysis predicts for 2B→0” ~as well
as for pair coagulation 2B→B) @11#

rB~ t !;~Dt !2d/2 for d,2, ~7!

rB~ t !;~Dt !21ln Dt at dc~2!52, ~8!

in agreement with exact solutions ind51. Thus particles
survive considerably longer than Eq.~5! would suggest. For
triplet annihilation (3B→0” ), in one dimension there remai
mere logarithmic corrections to the mean-field result@11#,

rB~ t !;S ln Dt

Dt D 1/2

at dc~3!51. ~9!

The higher-order (n>4) annihilation processes should all b
aptly described by the mean-field power laws~5!.

Exact results for the critical behavior of the DP and P
universality classes cannot be derived analytically, but
scaling exponents have been measured quite accuratel
means of computer simulations@1#, see Table I. The univer
sal properties of directed percolation can be represen
through Reggeon field theory@12#, which allows a system-
atic perturbational calculation of the critical exponents in
e expansion near its upper critical dimensiondc54. The
one-loop fluctuation corrections to their mean-field valu
are listed in Table I as well. At least for DP, the scalin
relationb5zna holds. A similarly reliable analytic compu
tation of the PC critical exponents has as yet not be
achieved, owing to the absence of a corresponding me
field theory~see Ref.@7# for further details!.

In Ref. @8#, the reaction-controlled diffusion model wa
defined as follows. Otherwise passive agentsA perform in-
dependent random walks to those sites that are occupie
1-3
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at least oneB particle; theB species is subject to diffusion
limited reactions of the above type. In our simulations,
have assumed theA hopping ratet0

21 to be independent o
the number ofB particles at adjacent sites. This contrasts
model of Ref.@8#, where theA hopping probability to a given
site was taken to be proportional to the number ofB particles
on that site. Yet as we are mostly interested in the asympt
behavior at lowB densities, this distinction should be large
irrelevant. Moreover, in the majority of systems studied h
the B pair annihilation reaction was set to occur with pro
ability 1, which eliminates multiple site occupations.

To be specific, considerB particles undergoing the Gribo
reactionsB→0” , B
2B, with an ensuing critical point in the
DP universality class. The effective theory near the ph
transition then becomes equivalent to a Langevin equa
for a fluctuating fieldb(xW ,t) @3,12,13#:

] tb5D~¹22r !b22mb21h. ~10!

With ^h(xW ,t)&50, the ensemble average ofb over noise
realizations yields the meanB particle density,^b(xW ,t)&
5rB(t). For the correlator of the stochastic noise one fin

^h~xW ,t !h~x8W ,t8!&52sb~xW ,t !d~xW2x8W !d~ t2t8!, ~11!

which is to be understood as the prescription to always fa
in the local particle density when noise averages are ta
According to Eq.~11!, all fluctuations vanish in the absorb
ing state, as they should. As before,l, s, andm represent
the B particle decay, branching, and coagulation rates,
spectively. The control parameterr denotes the deviation
from the critical point, e.g.,r 5(l2s)/D in the mean-field
approximation.

With the model definition in Ref.@8#, the effective diffu-
sivity of the agentsA becomes proportional to the localB
density. In fact, starting from the classical master equat
one can derive the following continuum stochastic equat
of motion for a coarse-grained fielda(xW ,t) that describes the
A species@8#

] ta5D̃~¹2a!b2D̃a~¹2b!1z ~12!

with noise correlations

^z~xW ,t !z~x8W ,t8!&50,

^z~xW ,t !h~x8W ,t8!&5D̃@¹2a~xW ,t !#b~xW ,t !d~xW2x8W !d~ t2t8!

2D̃a~xW ,t !¹2@b~xW ,t !d~xW2x8W !d~ t2t8!#.

~13!

The fluctuations of theb field thus influence theA diffusion
in a nontrivial manner.

Certainly outside the critical regime, well inside either t
active or inactive phases, which for DP are both charac
ized by exponentially decaying correlations in space a
time, one may apply a mean-field type of approximation.
this end, we consider theB particle density to be spatially
homogeneous, and neglect the noise cross-correlations in
04612
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~13!. Upon rescaling, the equation of motion~12! then re-
duces to a mere diffusion equation@8#

] tnA~xW ,t !5D̃rB~ t !¹2nA~xW ,t ! ~14!

for the probabilitynA of finding a particleA at point xW at
time t, with time-dependent effective diffusivityD̃rB(t). We
may interpret this result as follows. In the original model, t
hopping rate to an adjacent site is proportional to the num
of B particles on that site. At sufficiently low densities th
multiple B particle occupation of a given site can be n
glected, the averageB density represents the fraction of la
tice sites available for theA particles to hop to. Thus we
expect theA species diffusion rate to be approximately pr
portional to the globalB particle density. For this assumptio
to be accurate, theA particle distribution must also be as
sumed to be at least roughly uniform. However, local flu
tuations of theB density may induce some clustering fo
manyA particles as well, though certainly to a lesser deg
since in regions with small disjointB clusters, theA particles
become localized. Any deviations from the uniform effecti
diffusion coefficient caused by an inhomogeneousB particle
distribution would be diminished by this simultaneous clu
tering. We will discuss these effects in more detail below
we measure deviations from the mean-field behavior.

Under the above mean-field assumption, we may emp
the diffusion equation~14! to determine how the probability
distributionnA(xW ,t) evolves in time for a system of indepen
dentA particles that all start initially at a particular locatio
xW50, i.e.,nA(xW ,0)5d(xW ). Even with a time-dependent dif
fusion coefficient, Eq.~14! is readily solved via spatial Fou
rier transformation, resulting in a Gaussian:

nA~xW ,t !5
1

@4pD8~ t !#d/2
expS 2

xW2

4D8~ t !
D . ~15!

But the expressionDt in Fick’s law for standard diffusion
becomes replaced with an integral over the evolvingB den-
sity,

D8~ t !5D̃E
0

t

rB~ t8!dt8. ~16!

Naturally, the odd moments of distribution~15! vanish, while

^xW (t)A
k &5^uxW (t)Auk&.0 for k even. We then compute

^uxW~ t !Auk&5E uxW uknA~xW ,t !ddx,

5
@4D8~ t !#k/2

G~d/2!
GS k1d

2 D . ~17!

For k52 in particular, this reduces to

^xW~ t !A
2&52dD8~ t !. ~18!

For a constantB particle density, e.g., the saturation valu
rs in an active phase, we recover ordinary diffusion w
1-4
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effective diffusivity D5D̃rs . In an inactive phase with ex
ponential density decay~6!, we find instead

^xW~ t !A
2&5

2dD̃rB~0!

l
~12e2lt!. ~19!

Thus, asymptotically theA particles become localized, wit

^xW (t)A
2&→2dD̃rB(0)/l in the limit t→`. On the other

hand, if theB density decays algebraically, see Eq.~2!, then
for 0,aB,1 our mean-field solution predicts subdiffusiv
propagation~3! with aA5aB , whereas asymptotically

^xW~ t !A
2&;D̃ ln Dt ~20!

if aB51. Finally, for pair annihilation processes at the cri
cal dimensiondc52, governed by Eq.~8!, one finds

^xW~ t !A
2&;D̃~ ln Dt !2, ~21!

and similarly we obtain for triplet annihilation in one dime
sion, see Eq.~9!,

^x~ t !A
2&;D̃~Dt ln Dt !1/2. ~22!

III. MONTE CARLO SIMULATION METHODS

Our goal was to employ Monte Carlo simulations to co
pareaA with aB , as well as to determine the displaceme
probability distributionnA(xW ,t) for the A particles, and look
for deviations from the Gaussian distribution~15! predicted
by the mean-field approach. The simulations discussed
were executed on a cubic lattice with periodic boundary c
ditions in each spatial direction. In one dimension the latt
contained between 104 and 105 sites, and the two-
dimensional lattice ranged in size from 1003100 to 800
3800. In each simulation the system was initialized by p
ting one B particle at each site@initial density rB(0)51
@14##, and by randomly placing throughout the lattice a fix
number ofA particles with no site exclusion. For all of th
data given below~except where otherwise noted!, the density
of A particles in the lattice was fixed atrA50.5. Each time
step involved a complete update of theA species, followed
by a complete update of theB particles. The simulation wa
terminated either when the number ofB particles reached a
certain lower limit ~usually 0.1% of the number of lattic
sites!, or after a fixed number of time steps~typically '106).

With the exception of some particular runs in which theB
particles were noninteracting~i.e., subject only to the deca
B→0” ) and could thus be updated serially, we proceeded
follows. GivenN particles at the beginning of the time ste
N randomB particles on the lattice were chosen to be u
dated. In a given time step, someB particles might then be
addressed more than once while others not at all. Thi
appropriate even though the number ofB particles is chang-
ing in time, because the net loss ofB particles per time step
becomes less than one on time scales short compared t
simulation length. TheB particles were, in general, subjecte
to the reactions listed in~1!, and a single update proceeded
that sequence. To implement the processB→0” , the B par-
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ticle was deleted with probabilityl. Next, the B particle
underwent an offspring reactionB→(m11)B with probabil-
ity s. In the simulations discussed here, we chosem51, 2,
or 4. The offspring particle~s! were placed on the paren
particle’s nearest neighboring sites such that no offspri
were placed on identical places, and were then subject to
annihilation reactionnB→0” ~with n52, 3, or 4) if appli-
cable. If theB particle being updated did not undergo a
offspring reaction, it subsequently hopped to a neare
neighbor site with some probability and was then subjec
annihilation, which required alln B particles to be located on
the same site.

Initially, the A particles were also updated via Mon
Carlo. To this end, a random direction was chosen, and thA
particle was moved one step in that direction provided
least oneB particle was present on the destination site. Ho
ever, since theA particles were independent, it was lat
determined that they could be processed serially~i.e., by
simply passing through the list ofA particles!. Technically
this represents a microscopically different method, since
Monte Carlo procedure causes some particles to be upd
more than once, and others not at all at a given time step.
we found that both variants produced identical macrosco
results.

Our main interest was to determine the asymptotic sca
behavior of the globalB particle density in the lattice, as we
as to measure the mean-square displacement of theA species,
both as functions of timet. Henceforth, lengths will be mea
sured in units of the lattice constanta0, and time in units of
Monte Carlo steps. In most of our simulations we exp
spatial inhomogeneity in theB particle distribution. In par-
ticular, anticorrelations should develop in low dimensions
pureB annihilation kinetics. At the critical point for system
exhibiting phase transitions, at sufficiently large times theB
species distribution should become a scale-free spatial fra
at length scales large compared to the lattice constant
smaller than the system size~compare Fig. 1!. Therefore we
also periodically recorded the coordinates of bothA and B
particles in order to compute probability distributions a
correlation functions. For example, theB density correlation
function is defined as

CB~xW ,t;xW8,t8!5^rB~xW ,t !rB~xW8,t8!&2^rB&2. ~23!

By the translational and rotational invariance of the lattic
the equal-time density correlations are really a function
uxW2xW8u only. At criticality, we have

C~xW ,t;xW8,t !5C~ uxW2xW8u!;uxW2xW8u22b/n, ~24!

whence we find at equal positions

C~xW ,t;xW ,t8!5C~ ut2t8u!;ut2t8u22b/zn, ~25!

as a consequence of dynamic scaling.
To compute the equal-time correlation function~24! in

one dimension numerically, we fix a particularB site and
observe the distribution of all otherB particles as a function
of the distance from it. We measure this distribution for ea
1-5
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REID, TÄUBER, AND BRUNSON PHYSICAL REVIEW E68, 046121 ~2003!
B particle fixed and then average the resulting distributio
to obtain ^rB(x,t)rB(x8,t)&. In higher dimensions, we us
the lattice directions as representative of the full distribut
and computeC(uxW2xW8u) for pairs (xW ,xW8) with a common
lattice coordinate in one direction.

In many situations we expected the measured quantitie
be power laws as a function of timet. The simplest approach
to computing the exponenta in a power-law relationshipr
}t2a naturally is linear regression on lnr versus lnt. At the
continuous phase transition separating active and absor
states, one expects such a power-law dependence. How
when the system is slightly above or below the critical p
rameters, it usually behaves critically for some time bef
crossing over to supercritical or subcritical behavior~either
an exponential approach to the finalB particle density, or a
power law with a different exponenta8). If the system is not
precisely at criticality~at least for the time scales simulated!,
then offcritical behavior could lead to incorrect determin
tion of the critical exponent via linear regression. Howev
one can also compute a local exponentab for a measured
quantityr given by the expression@15#

ab52 logb2@r~bt!/r~ t/b!#. ~26!

Thus at timet, supposing a power-law dependence ont, ab is
the exponent inferred from the values ofr at bt andt/b; i.e.,
these two data points define a line on a log-log plot wh
slope is2ab .

The most time-consuming procedure in this study
volved finding the critical parameters for which the syste
was at criticality. Typically, the parametersl and m were
fixed, ands was varied. The critical value ofs was deduced
by simultaneously increasing the lower bound by definit
identifying systems as subcritical, and decreasing the up
bound by characterizing supercritical systems. In either c
the system behaved critically for some time~longer for s
closer to the true critical valuesc) before crossing over to its
asymptotic behavior, and so critical power laws could
approximated from the system’s intermediate scaling beh
ior. As noted previously, theB species phase transition b
tween active and absorbing states induces a localization
sition for theA particles, with critical subdiffusive behavio
The phase transitions for bothA andB particles clearly occur
at the same value ofsc , and hencesc can be determined
independently by measuring both theB particle density de-
cay and theA species mean-square displacements as a f
tion of time. We estimate our typical errors in determini
critical exponents and the subdiffusiveA species power laws
to be'60.01.

We also attempted to improve the precision of our estim
tion of sc by a method suggested in Ref.@15#, which we now
briefly describe. For the measured quantityr, which at the
critical parameter valuesc depends only on some power o
time t, i.e., r(sc ,t);t2a with some exponenta, one ex-
pects in the critical regimes'sc :

r~s,t !.r~sc ,t !@11ct1/n t~s2sc!#. ~27!
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Heren t5zn describes the critical slowing down as the co
trol parameters approaches the phase transition atsc , tc
;us2scu2n t. One first estimatessc , n t , andc from rela-
tively short simulations at various values ofs. A simulation
reaching large values oft is then performed at the estimate
sc . One obtains an improved estimate forsc by replacings
and r(s,t) in Eq. ~27! with the long simulation measure
ments, and then finding the value ofsc for which r(sc ,t) is
a straight line. This process may then be repeated to ob
the desired or computationally accessible accuracy. Note
inaccuracies in the estimates ofc and n t result in second-
order inaccuracies forsc anda @15#. However, this method
only works whens is already sufficiently close tosc so that
this first-order approximation is valid. In addition, statistic
fluctuations in the data must be smoothed as much as
sible through averaging over multiple runs for eachs value
so thatc and n t can be somewhat accurately determine
Unfortunately, we found that our simulations were not exte
sive enough in most cases to apply this method and ob
even more reliable estimates ofc, n t , andsc .

IV. ANNIHILATION KINETICS AND ANOMALOUS
DIFFUSION

We begin with the results of our Monte Carlo simulatio
for pureB species annihilation reactions. These serve to
the mean-field description of the ensuingA particle anoma-
lous diffusion in dimensions below, at, and above the criti
dimensiondc(n)52/(n21), and moreover provide a mean
to estimate the magnitude of errors to be expected in
data. In addition, the results for theB pair annihilation model
should describe the subcritical behavior for the reactions
hibiting active to absorbing transitions in the PC universa
class.

A. Spontaneous decayB\0”

We first verified that our simulations correctly reproduc
the n51 solution ~6! to the mean-field equation~4! giving
exponentialB density decay. This result should be valid
any dimension since all particles evolve independently. T
mean-field description for theA particles then predicts thei
localization according to Eq.~19!. We ran simulations in
both one~system size 10 000! and two dimensions~system
size 1003100) using a decay ratel50.01, and indeed
found excellent agreement at large times with predict
~19!. Initially, however, theA particles moved slower than
suggested by Eq.~19!, consistent though with our differen
microscopic realization of the reaction-controlled diffusio
model: the rules adopted in the simulations only distingu
between sites that are occupied or unoccupied byB particles,
and so multiple site occupation effectively corresponds
lower local densitiesrB in the analytical description. Yet a
low B particle densities multiple site occupation becom
negligible, leading toA species localization precisely as d
scribed by Eq.~19!. We also computed the actualA particle
displacement distribution as a histogram of final net d
placements. Using the measured average final mean-sq
displacement as input to Eq.~15! rather than estimating the
1-6
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REACTION-CONTROLLED DIFFUSION: MONTE CARLO . . . PHYSICAL REVIEW E68, 046121 ~2003!
coefficientD̃, we found good agreement with the predict
Gaussian distribution in both one and two dimensions,
though ind51 the data perhaps indicate a slight excess
particles localized very near their initial location.

In the results summarized above, at each Monte C
step the updatedB particles hopped to a nearest-neighbori
site with probability 1. We also investigated the effect
varying this probability. Initially, the mean-squareA dis-
placement then grows faster in situations with lowB particle
diffusivity because the probability of multipleB site occupa-
tion is reduced, leaving a larger fraction of available sites
the A species. However, as theB particles are depleted th
connectivity of the lattice decreases, and the movemen
the B species quickly becomes the dominant mechanism
A particle diffusion. We found an overall monotonic increa
of final A particle mean-square displacements as a func
of the B diffusivity. In one dimension the~temporary! local-
ization of anA particle requires only two sites unoccupied
B particles, compared with four sites in two dimension
Therefore the connectivity decreases more sharply ind51
as a function of theB density. Consequently diminishing th
B species random walk probability has a more pronoun
effect in one dimension than ind52.

B. Pair annihilation 2 B\0”

Since the critical dimension for theB particle pair annihi-
lation reaction isdc(2)52, the mean-field prediction~5!
does not apply to either the one- or two-dimensional simu
tions executed. Ind51 we expect according to Eq.~7!
rB(t);t21/2, and using Eqs.~18! and ~16! the mean-field
approach suggests^x(t)A

2&;t1/2. Figure 2 shows the simula
tion results~averaged over 20 runs! for B pair annihilation in
one dimension~system size 10 000! with annihilation prob-
ability m50.5. At first theB density decays faster than E
~7! predicts: initially the effective power law should be clo
to the mean-field resultrB(t);t21 since the anticorrelation
described in Sec. II develop only after some time h

FIG. 2. The B particle density and correspondingA species
mean-square displacement for the pair annihilation reactionB
→0” with m50.5 in d51 demonstrating excellent agreement w
the predicted asymptotic power laws.
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elapsed, whereupon the asymptotic decay;t21/2 is ap-
proached. Indeed, the graph verifies that the theoretical
ponentaB51/2 is adequately reproduced in the late tim
interval 103,t,104. We measured the corresponding exp
nentaA for the mean-squareA particle displacement in this
regime as well, and found that the simulation results ag
nicely with the mean-field exponentaA51/2, to the preci-
sion obtained in our simulations.

We may also inferD̃'0.69 by matching our numerica
integral of rB(t) with ^x(t)A

2&, though incomplete knowl-
edge ofrB(t), particularly in the transient regime, introduce
some errors to this estimate. A valueD̃.0.5 indicates that
more than oneA particle is hopping to the sameB particle
site on average. When someA-B correlations develop there
may be a higher density ofA particles in the vicinity of a
given B, which would in turn enhance the averageA diffu-
sion rate.

Figure 3 demonstrates that the predicted Gaussian di
bution Eq.~15! is not observed, despite the agreement in t
time dependence of the mean-square displacement resu
from the distribution. Compared to a Gaussian with match
second moment, there is a distinct excess of essentially
calized particles~with very small displacements!, which nec-
essarily implies longer ‘‘tails’’ at large displacement value
A closer examination reveals that the simulation results
the A particle displacement distribution agree over a lar
range of displacements with the normalized exponential
tribution

nA~x,t !5
1

2L~ t !
e2uxu/L(t), ~28!

where L(t) denotes a time-dependent characteristic len

FIG. 3. The measured distribution of theA particle displace-
ments corresponding to the system shown in Fig. 2 (B pair annihi-
lation in one dimension,m50.5, measured att510 000). Both
Gaussian~dashed! and exponential fits~full line!, uniquely deter-
mined by normalization and fixing the second moment with
simulation data, are depicted, on linear and logarithmic~inset!
scales. The exponential fit works very well, although the value a
and perhaps the tails of the observed distribution appear sm
than in the fit.
1-7



-
t
e-
e
on

on
f

y
ap
n

on
a

ri
,
-

-
-
ls’

o

n
h
p

ily
in

ce
l

f

h
fi-

ov

-
c

io

b-

re

o
ia
th

uch

, as

r

der

in-
r-

n-

e-

se-

of

he
r-

.
n

es

,
tion
ata.
is
ly

ckly
ata.
urse
ion.
ial
of
de-
ed

we
e

REID, TÄUBER, AND BRUNSON PHYSICAL REVIEW E68, 046121 ~2003!
scale. As will be discussed below, the distribution~28! obeys
dynamic scaling, so we determinedL by matching the sec
ond moment of this function with the simulation data at
510 000. As is evident from Fig. 3, the only significant d
viations from this fit appear for particles with zero displac
ment and at the tails of the distribution, where simulati
data contain greater error.

We can understand the qualitative features of this n
Gaussian distribution as a result of the low connectivity o
one-dimensional lattice. In small regions where allB par-
ticles have been annihilated, theA species are temporaril
localized and will have few subsequent chances to esc
thus lowering their effective diffusivity. Direct measureme
of the B pair correlation function, as well as the slowB
density decay, clearly indicates that particle anticorrelati
have developed. These anticorrelations enhance the prob
ity of finding substantial regions of zeroB particle density.
However, as mentioned before in the discussion of the va
tion of theB particle random walk probability in Sec. IV A
a significant part ofA movements probably result from hop
ping along with a particularB particle through several time
steps~especially ind51). Thus the effective diffusion coef
ficient is ~at least temporarily! much higher for such par
ticles, and this effect contributes results in the longer ‘‘tai
in the displacement distribution. We may think of alocal

diffusion rateD(xW ,t) which is proportional to the distribution
of available sitesb(xW ,t). Thus a particular particle will be
subject to a temporally varying diffusion rate that depends
its trajectory through the fieldb(xW ,t), recall Eqs.~12! and
~13!, just as the diffusing particle’s trajectory must be co
sidered for understanding diffusion on a static fractal. T
distribution depicted in Fig. 3 suggests a sort of phase se
ration into different populations: many particles are primar
subject to small diffusion rates, i.e., are mainly localized
regions with lowB density, while some others experien
quite large diffusivities~by remaining in areas of high loca
B particle densities!.

The variation of localA diffusion rates is the result o
inhomogeneities inb(xW ,t) and the coupling that allows anA
particle to be carried along by a particular wanderingB par-
ticle. Yet our earlier mean-field description for theA species
displacement distribution assumed that on average eacA
particle evolves with an identical effective diffusion coef
cient; i.e., the total number of hops for eachA particle should
be about the same. However, spatial inhomogeneities
scales larger than the distances traveled by typicalA particles
will cause the effective diffusivities for a particular time in
terval to vary spatially in a noticeable amount. This effe
should be especially pronounced in the case of theB pair
annihilation process because the emerging anticorrelat
will leave many regions of space rather devoid ofB particles.
A particles with larger effective diffusion coefficients pro
ably follow a particularB particle for some time, since theB
anticorrelations render them unlikely to be present in a
gion of high localB density. This distribution ofB density
spatial fluctuations should persist to a large extent through
the simulation runs, which in turn should yield large var
tions in the average diffusion coefficient experienced by
A species.
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We may construct a simple model to accommodate s
variations as follows. Suppose the number ofB particles, i.e.,
the number of available hopping sites for theA species, is
decreasing proportional to some negative power of time
is on average often the case in our simulations. If Eq.~2!
holds, we find for the fractionf of B particles that disappea
during a small time intervalDt!t: f (t)5aBDt/t. Now as-
sume that initially all of theA particles are diffusing ordi-
narily with an effective diffusivityD, and then after each
small time intervalDt, a fractionf of the activeA particles
becomes localized and remains immobile for the remain
of the simulation. This suggests that theA particle distribu-
tion will be a superposition of normalized Gaussians of
creasing width but multiplied by a factor to be found recu
sively from the condition that theA particle number be
conserved. More precisely, ind51 this distribution becomes
~with initial time t0 and final timet5tM , M>1):

P~x,t !5 (
k50

M

p~ tk!
1

~4pDtk!
1/2

expS 2
x2

4Dtk
D . ~29!

The prefactorsp(tk) are then determined by keeping the i
tegral ofP(x,t) normalized to unity:(k50

M p(tk)51. Recur-
sively, one thus arrives at p(t0)5 f (t0), p(tk)
5 f (tk)) j 50

k21@12 f (t j )# for 1<k<M21, and at lastp(tM)
5) j 50

M21@12 f (t j )#. This picture assumes that the entire r
gion surrounding anA particle is depleted ofB particles
nearly simultaneously, and that this region is not sub
quently visited by otherB particles. While this may be a
decent approximation under the condition ofB particle anti-
correlations, it is rather more difficult to justify in cases
emerging positive correlations~as we shall discuss below
when offspring reactions are introduced!. However, even
then someB clusters are eventually eliminated, leaving t
nearby A particles localized, at least temporarily. Furthe
more the activeA particles are diffusing normally with
^x(t)A

2&;t in their localB cluster until they become trapped
Applying this simplified model to the pair annihilatio

system, we setaB50.5, and we have chosenD50.2. We
then summed Gaussian distributions for simulation tim
ranging from t55 to 100, localizing a fractionf (t)
5aBDt/t at each integert. The result is depicted in Fig. 4
after appropriately rescaling the axes to match normaliza
and the measured second moment of the simulation d
Apart from large deviations for small displacements, th
‘‘continuous localization’’ fit appears to agree remarkab
well with the simulation results. Indeed this generatedA dis-
placement distribution even begins to decrease more qui
near its tails, as may also be observed in the simulation d
The disagreement between the data and model may of co
be traced to the simplifications assumed in its construct
However, the error also might arise from choosing the init
distribution: at the beginning of the simulation the number
B particles decreases sharply before anticorrelations have
veloped, and the above estimate for the fraction of localiz
A particles is not valid forDt/t;1. Despite its shortcom-
ings, the model seems to capture most of the features
have observed in theA species displacement distribution. W
1-8
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REACTION-CONTROLLED DIFFUSION: MONTE CARLO . . . PHYSICAL REVIEW E68, 046121 ~2003!
also computed the time dependence of the mean-square
placement using the ‘‘continuous localization’’ model. Fo
lowing a transient behavior, the inset in Fig. 4 sho
^x(t)A

2&;t0.55, close to the expected power law with 12aA

50.5 ~which we also observed in the simulation!. By trying
a variety ofaB values one can generate different appro
mate power laws, but the measured subdiffusiveA displace-
ment exponent was always found to be slightly larger th
12aB .

To examine the non-Gaussian character ofnA(x,t) fur-
ther, we measured its higher moments as a function of ti
In d51, Eq.~17! yields for the even moments of the mea
field Gaussian distribution:̂ x(t)A

2k&5(2k21)!! ^x(t)A
2&k.

While this factorization of higher moments still holds to th
accuracy of our simulation data, we found the prefactorsck

5^x(t)A
2k&/^x(t)A

2&k in our measurements to differ from th
predicted valuesc253, c3515, andc45105: we measured
the considerably larger valuesc2'5.5, c3'55, and c4
'1100. These numbers are actually closer to the values
would obtain from the exponential distribution~28!, namely
ck5(2k)!/2k, i.e.,c256, c3590, andc452520, but still off
by a factor of about 2 for the higher moments. Thus
exponential fit cannot entirely describe the measured di
bution either. Nevertheless, the factorization prope
^x(t)A

2k&}^x(t)A
2&k found in the simulation data is significan

for it indicatesdynamic scaling: once the time dependence
the characteristic length scaleL(t)5^x(t)A

2&1/2;t (12aA)/2 is
factored out, the shape of the probability distribution sho
remain constant in time. The distributions~15! and ~28!
clearly display this feature. Since the probability distributi
is fully determined by all its moments, our measurements
the first four moments indicate that the truenA(x,t) obeys
dynamic scaling as well.

At dc(2)52 one obtains the typical logarithmic corre

FIG. 4. The results from the ‘‘continuous localization’’ mod
superimposed with the measured distribution of theA particle dis-
placements corresponding to the system shown in Fig. 2. The m
reproduces the faster than exponential drop-off in the tails of
distribution, but still underestimates the fraction of highly localiz
particles. The inset depicts the power-law increase of^x(t)A

2& as
computed from the model.
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tions to the mean-field result, viz., Eq.~8! for the B particle
density, and Eq.~21! for theA species mean-square displac
ment. Simulations were also carried out at various values
m for a two-dimensional system. Figure 5 illustrates the a
parent agreement with the above predictions at long times
simulations run with annihilation probabilitym51 ~averaged
over five runs on a 1003100 lattice!. However, such a large
annihilation rate severely suppresses theA particle diffusion,
so one should not really draw too firm conclusions fro
these measurements. We have again measured the c
sponding distribution of theA particle displacements. In Fig
6 we see thatnA(xW ,t) is non-Gaussian and resembles its on
dimensional counterpart~Fig. 3!, though the deviations from
Eq. ~15! are less pronounced. Whenm!1, anticorrelations
develop over much larger time scales and as the correct

el
e

FIG. 5. The B particle density and correspondingA species
mean-square displacement for the pair annihilation reactionB
→0” with reaction probabilitym51 in d52. At long times, both
plots indicate the expected logarithmic corrections to the mean-fi
scaling laws.

FIG. 6. The measured distribution of the finalA particle dis-
placements corresponding to the system shown in Fig. 5 (B pair
annihilation in two dimensions,m51), shown with Gaussian and
unnormalized exponential fits.
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REID, TÄUBER, AND BRUNSON PHYSICAL REVIEW E68, 046121 ~2003!
are only logarithmic, form50.01 ~20 runs on a 2003200
lattice! we merely recovered the mean-field results in
regime accessible to our simulations. Though not sho
here, theB density decay was captured by the mean-fi
power law on the time scales of our runs, and theA particle
mean-square displacement followed the integral of that qu
tity after some initial transient behavior. Accordingly, theA
particle distribution was essentially Gaussian in this sit
tion.

C. Triplet annihilation 3 B\0”

Next we consider the triplet annihilation reaction 3B
→0” . The upper critical dimension here isdc(3)51. Hence
in one dimension we expect logarithmic corrections to
mean-field power-lawB density decay, as given in Eq.~9!.
According to the simple mean-field picture, this leads to E
~22! for the A species mean-square displacement. Figur
shows our simulation results~averaged over 20 runs on
lattice with 10 000 sites, annihilation probabilitym51). We
are able to clearly detect the logarithmic corrections eve
m51 since this reaction is a much slower process than
annihilation~requiring three particles to meet on a site!. The
power-law regression on̂x(t)A

2&/( lnt)1/2 yields a value of 1
2aA'0.52, whereas the expected value is 0.50. Suppo
the mean-field result fully applies here, this gives an idea
the overall precision of our simulation data. TheA particle
displacement distribution also agrees well with the predic
Gaussian, apart from a slight excess of presumably local
particles around̂xA

2&50 and correspondingly longer ‘‘tails’
of the distribution. Yet the deviation is much smaller than
the pair annihilation case because the anticorrelations are
pronounced here.

For d52.dc , the mean-field result~5! should provide a
correct description, i.e., forn53 in the long-time limit t

@t3 :rB(t);t21/2 and ^xW (t)A
2&;t1/2. Figure 8 demonstrate

agreement with these mean-field predictions after 103 or
fewer time steps~from 3 runs on a 1003100 lattice with
againm51). In fact, to our resolution the mean-square d
placement of theA species converges to the mean-fie

FIG. 7. The B particle density and correspondingA species
mean-square displacement for the triplet annihilation reactionB
→0” with m51 in d51, both displaying the expected logarithm
corrections to the mean-field scaling laws.
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power law markedly faster than theB particle density. As yet
we have no explanation for this surprising observation.

D. Quartic annihilation 4 B\0”

The kinetics of quartic annihilation should be aptly d
scribed by the mean-field rate equation~4! in all physical
dimensions sincedc(4)52/3. Settingn54 in Eq. ~5! we
thus expectrB(t);t21/3 for sufficiently larget@t4. Accord-
ing to Eqs.~18! and ~16!, ^xW (t)A

2&;t2/3. We ran simulations
in two dimensions on a 1003100 lattice~with m51, aver-
aged over 8 runs! and found good agreement with the
mean-field scaling laws at sufficiently long times both for t
B particle density decay and theA species mean-square di
placement. For the annihilation processes, largern values
imply longer crossover time scalestn sincen particles must
meet for a reaction to occur, see Eq.~5!. Indeed, by compar-
ing with the results for the triplet reactions, we noticed th
the time interval of transient behavior prior to convergen
to the asymptotic mean-field power law was at least an or
of magnitude longer for then54 system. As in the triplet
simulations, the convergence to mean-field behavior
curred faster for theA particle mean-square displaceme
than for the totalB density.

V. ACTIVE TO ABSORBING STATE PHASE TRANSITION
AND LOCALIZATION

After this preliminary study with pureB annihilation ki-
netics, we now turn our attention to the primary goal of o
investigation, namely anomalous diffusion on a dynam
fractal ~see Fig. 1!. Each reaction discussed below exhibits
continuous phase transition separating active and absor
stationary states. At the critical point, theB particle distribu-
tion is known to be fractal in space and time. Thus the
sumption of a homogeneousB particle distribution is signifi-
cantly violated, and we expect the mean-field description
theA species propagation to be inadequate. Our aim has b
to measure and characterize the deviations from the m
field predictions. All of the phase transitions in theB particle
system to be discussed here are described either by th
rected percolation~DP! or parity conserving~PC! universal-

FIG. 8. TheB particle density andA species mean-square dis
placement for the triplet annihilation reaction 3B→0” (m51) in d
52, confirming the mean-field power laws.
1-10
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REACTION-CONTROLLED DIFFUSION: MONTE CARLO . . . PHYSICAL REVIEW E68, 046121 ~2003!
ity classes. The accepted critical DP exponents are liste
Table I. As mentioned in Sec. I, a PC phase transition
observed ind51 whenl50 in the reaction scheme~1!, and
m is even; in higher dimensions the~degenerate! critical
point occurs at zero branching rate and is governed by m
field exponents@7#. The PC exponents ind51 are also given
in Table I.

Knowledge of theB particle density behavior of thes
systems in the active and absorbing states near the p
transition is also important, both in locating the critical po
and for comparison with the asymptotic critical scaling law
In fact, in simulations we will inevitably always be slightl
away from the precise critical control parameter valu
However, in the vicinity of the phase transition we expect
system to exhibit the critical power laws for some time
terval before crossing over to subcritical or supercritical
havior. The closer the system parameter values are to
critical ones, the longer this critical regime lasts, as also s
gested by Eq.~27!, and the more precisely critical exponen
can be measured. Whenm is odd ~independent ofl), we
expect systems in the absorbing state~i.e., dominated by an-
nihilation reactions! to exhibit behavior dictated by Eq.~6!,
the solution toB particle radioactive decay, with some effe
tive rateleff , dependent onl, s, andm. To be more precise
let us consider reactions~1! with m51 andn52 as is the
case in many of the situations examined below. Recal
that the branching reactions are local~offspring particles are
placed on the parents’ neighboring sites!, in low dimensions
there is a significant probability that the parent and offspr
will meet in the next few time steps after the branching
action and undergo pair annihilation. Together, the branch
and subsequent annihilation reactions generate the decB
→0” , even ifl50 on the outset. Generally, this is true wh
n52 and m is odd. However, whenn52 and m is even,
local parity conservation eliminates the possibility to gen
ate ‘‘spontaneous’’ death processes. Thus in the PC uni
sality class the inactive phase is characterized by the po
laws of the pair annihilation reactions 2B→0” , whence in
subcritical systems one should asymptotically observe
behavior given in Eq.~7! with d51. In the active phases o
both DP and PC systems, theB density will approach its
stationary value exponentially. This follows immediate
from linearizing the corresponding mean-field rate equatio

A. Directed percolation universality class,dÄ1

To search for the DP transition in one dimension, we c
sidered reactions~1! with m51 andn52, with l50.01 and
m51 fixed while s was varied. Notice that settingm51
eliminates the possibility of multipleB particles occupying
the same site, so that theB particle density exactly corre
sponds to the density of available lattice sites forA particle
hopping. According to the list in Table I,rB(t);t20.159 at
criticality, which implies within the mean-field approxima
tion (aA5aB) that ^x(t)A

2&;t0.841. Our closest estimate o
the critical point issc'0.8975. Figure 9 shows the powe
law dependence ofrB(t) and^x(t)A

2&, obtained from 26 runs
on a lattice with 10 000 sites. The double-logarithmic line
regressions yield valuesaB50.161 andaA50.167 over
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more than three decades, i.e.,aA2aB'0.006. As we esti-
mate the numerical uncertainty of the measured exponen
be at least60.01, we observe agreement both betweenaB
and the DP prediction as well as betweenaB andaA within
our error bars. We also computed local exponents, as defi
in Eq. ~26! settingb52. Figure 10 indicates that after fol
lowing some transient behavior,aA'0.158, in excellent
agreement with the critical DP value. Thus we conclude t
our mean-field prediction of theA particle mean-square dis
placement time dependence works excellently for this re
tion at least on the time scales we were able to access
our simulations.

In Fig. 11 ~inset! we demonstrate the algebraic depe
dence of theB particle correlation function on particle sep
ration, indicating the spatially fractal structure at criticalit
The data were taken att550 000, averaged over nine simu
lations. The measured exponent 2b/n agrees well with the
DP prediction 0.50 ind51 over two decades. We remar
that for small distances we observed that the correla
function scales asCB(uxu);uxu2b/n, i.e., with precisely one
half the asymptotic scaling exponent. The origin of this c
be understood as follows: at lowB particle densities, the site
occupation numbern(x) is either zero or one; hence foruxu
,j ^n(x)n(0)&'^n2&5^n&;rB;j2b/n. The proportional-
ity factor here must be a scaling functionf (r /j), and de-
manding that thej dependence must cancel at criticality, w

FIG. 9. TheB particle density andA species mean-square dis
placement for the DP reactionsB→0” (l50.01), B→2B (s
50.8975), 2B→0” (m51) in d51.

FIG. 10. The local exponentaA corresponding to data shown i
Fig. 9 ~with b52) and Fig. 14~with b54).
1-11
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REID, TÄUBER, AND BRUNSON PHYSICAL REVIEW E68, 046121 ~2003!
obtain the aforementioned scaling law. As we are not p
cisely at the critical point, we see a crossover to exponen
decay at large distances.

Figure 12 depicts the measured fullA particle displace-
ment distribution att550 000. It displays an excess of loca
ized particles and corresponding long tails of the distributi
similar to the pair annihilation case. But the deviation from
Gaussian distribution appears much less pronounced in
system. The power-law dependence ofB particle spatial cor-
relations qualitatively suggests the observed distributi
Such strong correlations yield macroscopic regions of re
tively largeB densities which anA particle may traverse an
thus acquire a large displacement. However, such clus
necessarily indicate compensating large regions of very
B particle density, where theA particles become highly lo
calized. TheA particles at the fractal ‘‘boundary,’’ which by
its nature accounts for a significant fraction of the syst
volume, appear to behave in accord with the mean-field p
diction. This is suggested by the fact that the data in Fig.

FIG. 11. TheA andB particle pair correlation functionsCA(x)
and CB(x) ~inset! at the DP critical point (d51, measured att
550 000).CB(x);uxu22b/n is approximately scale invariant. TheA
particles are very likely to be found on the same site, but there
slight negative correlation with nearby sites.CA(x) is essentially
zero at distancesuxu.10.

FIG. 12. The measured distribution of theA particle displace-
ments corresponding to the system shown in Fig. 9~DP critical
point for theB system ind51, measured att550 000).
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agree well with a Gaussian distribution for intermediate d
placement values.

Yet it was in these fractal boundaries that we expected
deviation from the mean-field approximation to arise. O
possibility we had imagined is thatA particles in the bound-
ary region are driven towards denserB regions owing to the
particle density gradient expected from the formation
clusters, thus destroying the spatial homogeneity of theA
particles and resulting in a higher net diffusion rate th
assumed by mean-field theory. This behavior can be dis
guished by computing theA-A particle correlations. If the
described large-scaleA-B coupling were strong enough, the
we would expect to see someA particle correlations as the
congregate in regions of highB density. But these correla
tions were not observed, as demonstrated in Fig. 11. We
attribute the inability of theB particles to induce significan
correlation in theA system to the low connectivity of a one
dimensional lattice. However,CA(0) does indicate a signifi-
cantly increased probability to find multiple occupation of
given site. A weak negative correlation seems to have de
oped for 0,uxu,5. Such a distribution may be the result
the ‘‘piggy-back’’ effect discussed earlier: severalA particles
may in fact follow a singleB particle through a number o
time steps. If theB particle is subsequently annihilated, th
‘‘piggy-backing’’ A particles are all~temporarily! localized at
their current site. The negative correlation may just be
compensation for the effective mutual attraction of a gro
of nearbyA particles all following the sameB.

We have also measured the higher moments of theA dis-
placement distribution nA(x,t). We found ^x(t)A

2k&
5ck^x(t)A

2&k, indicating dynamic scaling, albeit withc2

53.3, c3520, andc45185 compared with the values 3, 15
and 105 that would result from a Gaussian. A few distin
tions between the pair annihilation case and this DP ph
transition may account for the significant differences in t
corresponding deviations from the mean-fieldA displace-
ment distribution. First, theB particle density decays muc
slower in the DP case (aB'0.16 as compared with 0.5)
This slower decay may cause the DP distribution to be do
nated by the ‘‘active’’A particles. For a fixed system size w
will also observe the DP system for longer durations. Sin
the B particles undergo ordinary diffusion while reactin
these extended time scales imply that previously locali
regions~where the localB density is zero! are likely to be
visited by wanderingB particles. Thus the localized portio
of the A particle distribution becomes smeared as thesA
particles are reactivated, which makes it more likely that
A particles experience roughly the same average effec
diffusion coefficient throughout the simulation~as assumed
in the mean-field approach!. Finally, at the DP phase trans
tion, the B particles are positively correlated, whereas t
pair annihilation process induces negative correlations. P
tive correlations may also contrive to weaken particle loc
ization, since theA species in regions of high localB density
are less dependent on singleB particles for their mobility. We
also note that as a consequence of the effective ‘‘slaving’
the A species by theB particles, the correlation length expo
nentsn andn t5zn should be identical for both the active t
absorbing transition in theB system and the inducedA local-

a
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REACTION-CONTROLLED DIFFUSION: MONTE CARLO . . . PHYSICAL REVIEW E68, 046121 ~2003!
ization transition. Indeed, to the accuracy we could de
mine those exponents by means of Eq.~27! and the method
described in Ref.@15#, this equality appeared to hold.

The expected time independence of the equal-timeB den-
sity correlation function and the extent of theB particle clus-
ters explain the time independence of theA displacement
distribution. Recall that the origin of the non-Gaussian d
tribution is that theA particles experience different effectiv
diffusivities depending on their location with respect toB
clusters. What determines anA particle’s placement in the
distribution is the average diffusion coefficient experienc
over the length of the simulation, neglecting the possibi
of biased diffusion due toB particle gradients. For the shap
of the displacement distribution to remain constant in tim
the shape of the distribution of time-averaged effective d
fusion rates most likely remains constant as well~even while
on average the effectiveA species diffusion rate is decreasin
with time!. Subsequent measurement of theA diffusivity dis-
tribution supports this interpretation, see Fig. 27 in Sec.
below. This is only possible ifA particles are able to remai
in a denseB region for a large portion of the simulation
made possible by large cluster sizes implied by the pow
law correlation function, while others remain in a low
density region for long durations. These two persisting
tremes maintain the non-Gaussian nature of theA species
displacement distribution. However,A particles at the fracta
boundary, which comprises a considerable volume of
system and thus contains a large fraction of theA particles,
may all see roughly the same effective diffusion rate over
length of the simulation, which results in the Gaussian m
region ofnA(x,t). Furthermore, the stationarity of the sha
of the distribution of effectiveA diffusivities is likely the
reason we see such good agreement betweenaA andaB . For
instance, even if the global average instantaneous diffu
rate evolved asD̃^rB(t)& ~as we should expect!, a changing
distribution shape, such as increasing enhancement of
phase separation between ‘‘localized’’ and ‘‘active’’ regio
while maintaining the proper global diffusion rate, wou
induce additional time dependence and cause deviat
from Eq. ~18!. However, we have no precise argument
the apparent time independence of these distributions.

We also sought to verify the predicted behavior aw
from the phase transition. Settings50.910, sufficiently
above the critical branching rate, we observed almost im
diate convergence of theB particle density to its active stat
saturation valuers5^rB(t)&'0.26, with standard deviation
0.009. As expected and depicted in the inset of Fig. 13, thA
species then exhibits normal diffusion (aA50). ~The slight
deviation at the end of the single run on 10 000 sites may
a finite-size effect.! By Eqs.~18! and~16! we also expect the
prefactor to be 2D̃rs , wherefrom we estimateD̃'0.39. For
ordinary diffusion, in the absence of any correlations,D̃
50.5. Indeed, our algorithm dictates choosing a hopping
rection first, and then checking for the presence of aB par-
ticle at the destination site. Thus on average one of
neighboringA particles will hop to aB site. To observe sub
critical behavior, we sets50.890. Figure 13 illustrates th
convergence to the expected exponential density decay
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an effective decay rateleff'0.0002 ~ten runs on a system
with 10 000 sites!. Initially ~for t,1000), a brief quasicriti-
cal regime is visible with power-law decayrB(t);t20.26 and
correspondinglŷx(t)A

2&;t0.77. For t.2000 we then observe
exponential convergence torB50 and the stationary value
for ^x(t)A

2&, both with the same time constantleff'0.0002.
As discussed above, we expect the macroscopic prope

of the DP phase transition to be independent of the value
l, for d<2 even persisting tol50, i.e., the absence o
spontaneous decay. To check this, we ran simulations
reactions~1! with m51 andn52, settingl50, m51, and
varying s. We estimatedsc'0.8930, slightly below the
value found whenl50.01. Figure 14 demonstrates the cri
cal behavior deduced from data taken over more than th

FIG. 13. A species mean-square displacement in the superc
cal and subcritical regimes for the DP processes of Fig. 9 (d51).
For s50.910.sc , one finds normalA diffusion. In the subcritical
regime (s50.890), theB particle density decays exponential
with leff'0.0002, and the mean-squareA displacement approache
the asymptotic value exponentially with the same time const
~Both subcritical datasets are rescaled to a unit prefactor.!

FIG. 14. TheB particle density andA species mean-square dis
placement for the DP reactions~branching and annihilating random
walks with odd offspring number! B→2B (s50.8930) and 2B
→0” (m51) in d51. For t,200 000, the critical power laws ar
observed. Subsequently a crossover to subcritical behavior ca
seen.
1-13
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REID, TÄUBER, AND BRUNSON PHYSICAL REVIEW E68, 046121 ~2003!
decades~20 runs in a lattice with 20 000 sites!, before the
transition to subcritical behavior becomes evident. We fou
aB'0.158, in superb agreement with the expected DP va
0.159. We measuredaA50.157, soaB2aA'0.001. Again
any significant deviations from the mean-field prediction
the critical point, if present at all, must arise at time sca
inaccessible to our simulations.

However, the local exponentsaA andaB , settingb54 in
Eq. ~26!, turned out not to be constant. In the regime fro
which we inferred the global values ofaB , the local values
oscillate about their averages by'0.01, whereas the loca
aA is a much smoother function in time~see Fig. 10!. The
steady increase inaA ~and aB) indicates that the system i
actually in the inactive phase. We found the increase in
local aB exponent to be significantly faster. However, this
not an indication of deviation from the mean-field predicti
for the mean-square displacement of theA species. We, in
fact, computed numerically the integral of theB particle den-
sity and compared it with the measured mean-squareA dis-
placement. We found that fort.10 000, the error betwee
the two measurements was less than 1%. We estimateD̃
50.39 for this reaction in order to obtain the best ma
between the measured mean-squareA displacement and the
integral ofrB(t). This value is in good agreement with es
mates from other reactions. Both theB andA particle corre-
lation functions and theA species displacement distributio
were basically identical to Figs. 11 and 12.

B. Directed percolation universality class,dÄ2

To investigate the properties at a DP transition in t
dimensions, we used the same reactions and rates asd
51, namely B→0” (l50.01), B→2B ~varying s), and
2B→0” (m51). For d52, Table I predictsrB(t);t20.451,
which implies, according to our mean-field description, th

^xW (t)A
2&;t0.549. Our best estimate of the critical branchin

rate issc'0.2233. Figure 15 shows the power-law depe
dence ofrB(t) and ^xW (t)A

2&, inferred from 40 runs on a
8003800 square lattice. The initialA density was set to 0.01
~as opposed to the usual 0.5) here. The power-law fits im

FIG. 15. TheB particle density andA species mean-square di
placement for the DP reactionsB→0” (l50.01), B→2B (s
50.2233), 2B→0” (m51) in d52.
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D̃50.256, very close to the expected 0.25 from ordina
diffusion in two dimensions~since on average oneA particle
will hop to each availableB site!. The slight error in com-
puting D̃ is probably a result of the transient behavior at t
beginning of the simulation, where theB density is still
larger than what the power-law fit would predict. Figure
shows the local exponentaA ~computed withb52), indicat-
ing that the system is indeed subcritical, asaA is increasing
with time for larget. But the minimum plateau value is ver
close to the predictedaA'0.45. Figure 17 demonstrates th
the B particle distribution is still fractal att550 000, yield-
ing an effective exponent value 2b/n close to 1.59~as ex-
pected from DP! at intermediate distances. Figure 18 depi
theA species displacement distribution att550 000 together
with the mean-field Gaussian and an~unnormalized! expo-
nential fit of the distribution tails. As in previous cases, t
‘‘tails’’ of the distribution are longer than a Gaussian wou
suggest, and instead appear to be matched well by an e
nential.

At last, we verify the DP transition in two dimension
whenl50, and compare theA particle anomalous diffusion
to the nonzerol case, using the same reaction rates as be
in d51. BecauseaB is so large for DP ind52, we had to
use quite sizable systems (8003800) to measure exponen
over several decades in search of the critical point. Thus

FIG. 16. The local exponentaA corresponding to data shown i
Fig. 15 ~with b52).

FIG. 17. TheB particle pair correlation functionCB(x) at the
DP critical point (d52, measured att550 000).
1-14
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REACTION-CONTROLLED DIFFUSION: MONTE CARLO . . . PHYSICAL REVIEW E68, 046121 ~2003!
determination ofsc was not as precise. For theB particle
density andA species mean-square displacement as funct
of time, the measured exponents areaB'0.47, approxi-
mately 0.02 larger than the DP value, andaA'0.48. We
found our system close to but below criticality, and therefo
observed time-dependent local exponentsaA and aB . We
also completed fewer~20! runs for this system, and so expe
a larger error on our measurements of the exponents.
power-law fit prefactors implyD̃'0.29, in fair agreemen
with our expectation of 0.25 and previous measurements
summary, we have not uncovered any significant deviati
from the behavior observed forl.0.

C. Parity conserving universality class,dÄ1

In order to observe the phase transitions from active
inactive/absorbing states in the PC universality class,
looked at branching and annihilating random walks w
even number of offspring particles, i.e., setl50, n52, and
either m52 or 4 in the reaction scheme~1!. In the former
case, 2B→0” combined withB→3B, we were forced to se
the annihilation probability tom50.5 in order to detect the
phase transition~at varying branching probabilitys). Figure
19 shows the power laws for theB particle density decay an
theA species mean-square displacement as a function of
near the phase transition~at sc'0.2175). Our measuremen
of aB50.269 agrees fairly well with the expected PC exp
nent 0.285~from 20 runs, each with 60 000 sites!. Further-
more, aA50.271 is in excellent agreement withaB . The
power-law fits shown implyD̃50.45 for this reaction. Figure
20 depicts a measurement of theB density correlation func-
tion at t550 0000, and the predicted PC exponent ratio 1
according to Table I. Measurements ofCB(x) at t550 000
and t5100 000 yielded distributions very similar to th
shown in Fig. 20. Figure 1 shows a space-time plot for th
reactions illustrating the fractal nature of the process at c
cality.

FIG. 18. The measured distribution of theA particle displace-
ments corresponding to the system shown in Fig. 15~DP critical
point for theB system ind52, measured att550 000). The dashed
line indicates a Gaussian fit, and the solid line represents an un
malized exponential fit to the distribution tails.
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We also observed the critical behavior for the PC re
tions 2B→0” (m51) combined withB→5B. Settingm51
helps to minimize the number of necessary random numb
as well as prohibits the multiple occupation of lattice sit
and thus avoids discrepancies between theB particle density
and the density of available sites for theA species. In Fig. 21
we display theB density andA species mean-square di
placement as a function of time near the phase transition~at
sc'0.2795), implyingD̃50.50 ~averaged over 20 runs o
the lattice with 60 000 sites!. Indeed we again find good
agreementaB'0.274'aA , as well as with the simulation
data depicted in Fig. 19, and the predicted PC value. In
dition, we measured theA displacement distribution at thre
distinct times:t550 000, t5100 000, andt5600 000. By
scaling the ordinate by a factors5(t2 /t1)(12aA)/2, and the
abscissa by 1/s, the three curves are seen to be essenti
identical in shape, see Fig. 22, which supports the dyna
scaling conjecture that theA particle distribution maintains
its shape as it evolves in time. In Fig. 23 we show the pa
of five A particles in one of the simulations contributing
the data in Fig. 21. The selectedA particles are those with the

or-

FIG. 19. TheB particle density andA species mean-square dis
placement for the PC reactionsB→3B (s50.2175), 2B→0” (m
50.5) in d51.

FIG. 20. TheB particle pair correlation functionCB(x) at the
PC critical point ind51 ~measured att5500 000).
1-15
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REID, TÄUBER, AND BRUNSON PHYSICAL REVIEW E68, 046121 ~2003!
greatest displacements. The trajectories consist of period
localization~very little activity! interspersed with periods o
much movement. This diagram resembles those for o
cases of anomalous diffusion such as Levy flights. We a
examined a subcritical system, settings50.277. Figure 24
shows an initial critical regime withrB(t);t20.26, crossing
over very quickly to the subcritical behavior dominated
pair annihilation,rB(t);t20.5. We see that throughout thes
regimes the mean-square displacement of theA particles
agrees remarkably well with the integral of theB density,
settingD̃50.425~from seven runs, each with 40 000 sites!.

To uncover the origins of the non-Gaussian distributio
observed in the systems thus far examined, we also con
ered a simple model in which theB particle distribution re-
mained uncorrelated, while still exhibiting the desired ov
all density decay. The algorithm allowed theB species to
diffuse through the lattice without site exclusion, but r
moved sufficiently many of them at random so that theB
density followed the prescribed global behavior. For e
ample, we forced theB density to decay as observed in Fi

FIG. 21. TheB particle density andA species mean-square di
placement for the PC reactionsB→5B (s50.2795), 2B→0” (m
51) in d51.

FIG. 22. The measured distribution of theA particle displace-
ments corresponding to the system shown in Fig. 21~PC critical
point for theB system,d51) at different times as indicated.
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21, near the PC phase transition ind51. As would be ex-
pected, the time dependence of the mean-square disp
ment of theA species agreed with the integral of theB par-
ticle density with the absolute error bounded by 10. T
required choice for this agreement wasD̃50.95, a puz-
zlingly large value, considering all previous observatio

gaveD̃'0.5. Since in this algorithm theB particles are not
being continuously created and annihilated, theA-B coupling
is actually stronger, and thus on average there is probab
higher density ofA particles surrounding a typicalB site,
thereby increasing the effectiveA diffusivity. We may now
compare theA displacement distributions att5100 000 for
the homogeneous and true PC systems, see Fig. 25. Diffe
effective diffusivities required an area-preserving rescali
While there does appear to be some deviation from a Ga
ian even in the artificial model, the figures suggest that
deviation is not as great as in the true PC system withB
particle correlations. Though not shown, a rescaled vers

FIG. 23. The paths of the fiveA particles with largest displace
ments in a simulation contributing to the data plotted in Fig. 2
Notice the long intervals of particle localization interspersed w
brief periods of high mobility.

FIG. 24. TheB particle density andA species mean-square dis
placement for the PC system of Fig. 21 in the subcritical regi
(s50.277,sc). The crossover from the critical power laws t
those of the inactive phase is clearly visible.
1-16
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REACTION-CONTROLLED DIFFUSION: MONTE CARLO . . . PHYSICAL REVIEW E68, 046121 ~2003!
of the radioactive decayA displacement distribution agree
well with the ‘‘artificial’’ distribution shown here, as one
might expect. We suggest that the low connectivity of t
one-dimensional lattice necessarily causes significant de

tions from the average effective diffusivityD̃^rB(t)& for the
A species, which then yields a non-Gaussian distribution
theA particle displacements. However, Fig. 25 demonstra
that B particle correlations are also significant in produci
deviations from the mean-field prediction.

We also explored a few other algorithms to verify that o
results were not particular to our implementation. First
adapted theA species hopping algorithm, so that whenev
an A particle could hop, it would with probability 1. Prev
ously, A particle hopping was implemented by choosing
direction to hop, and then checking to see if the destina
nearest-neighboring site was occupied by aB particle. We
executed the maximalA particle hopping algorithm fors
50.2795, our best estimate of the critical point for the P
system withm54. The time dependence of the mean p
ticle displacement agreed very closely with the integral
the B particle density, withD̃50.87. At t5100 000 theA
displacement distribution coincided with that in Fig. 2
apart from a scaling factor to account for the discrepancy
D̃. The increase in this value simply indicates thatA par-
ticles will hop whenever a neighboring site is available.

Next we evolved theB particles untilt5500, when theB
density was down to 0.07. Thus clusters and relatively vac
regions should have begun to form. The algorithm th
placedA particles on the existingB particles and studied th
A diffusion thereafter. Though after a longer transient,
mean-squareA displacement approached the integral of theB

density~settingD̃50.5). Finally we examined an algorithm
that removedA particles from the system after they had be
localized for a certain time interval~here chosen as 10 00
Monte Carlo steps!. We found the number of activeA par-
ticles to be a sharply decreasing function of time. The loc

FIG. 25. The measured distribution of theA particle displace-
ments corresponding to the system shown in Fig. 21~PC critical
point for the B system,d51), compared with the one resultin
from the artificial model with uncorrelatedB particles. Notice that
different effective diffusivities were applied to obtain equal seco
moments.
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ized particles being removed from the computation h
lower effective diffusion rates than the remaining active p
ticles, overall increasing the mean-squareA displacement.
This observation supports the hypothesis that the effec
diffusion rate for theA species is not uniform, indicating tha
in the previous models, a significant fraction of theA species
was localized over time scales at least as large as 10
Monte Carlo steps. Thus mostA particles are not truly dif-
fusing through the dynamic fractal, but rather execute
occasional hop when passed over byB particles.

VI. CONCLUDING REMARKS

We have numerically investigated the reaction-control
diffusion model introduced in Ref.@8# for variousB species
reaction systems, and studied the ensuing anomalous d
sion for theA particles on the emerging dynamic fractalB
clusters. We found excellent agreement for all examined s
tems of theA species mean-square displacement^xW (t)A

2&
with the integral of the meanB particle densitŷ rB(t)&, at
least within the accuracy of our data. However, the me
field Gaussian distribution~15! for the A particle displace-
ments was not observed. We have argued that the prim
factor in creating this deviation is a variation in the effecti
diffusion rate of theA particles, which is proportional to the
number of hops executed by anA throughout the simulation
run. The shape of the resultingA displacement distribution
was seen to be the same at different times and also
many different systems~see Fig. 26!, thus suggesting that th
distribution shape of effective diffusion rates also rema
the same over different time scales and systems.

The contributing factors to producing the diffusion ra
distribution were identified as persisting spatial fluctuatio
in the localB particle density~enhanced in situations with
strongB correlations!, the low connectivity of the one- and
two-dimensional lattices examined here, and the fact that

d

FIG. 26. The measuredA species displacement distributions fo
the majority of systems investigated here~PA and TA represent the
pureB particle pair and triplet annihilation processes, respective!.
We see that most of the data collapse to roughly the same sc
function ~except for the result for one-dimensionalB pair annihila-
tion with the strongest anticorrelations!. The observed distribution
clearly deviates from the mean-field Gaussian both at small
large displacements.
1-17



-
r-

th

oi
s
t
ea

ith

e

-
of
-
e

-

-
ol-
een
bu-
d
ese
uni-
r-
ns

-

,

t

to
he

ere.
e or
te
he

e-

gh
if-

wly
he
ll

nce
R
94.
e-
ia.

rin

tic

co
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A species tend to be carried along with diffusingB particles
~the ‘‘piggy-back’’ effect!. As mentioned above, the distribu
tion of effective diffusivities is constrained in that the ave
age diffusion rate should equalD̃^rB(t)&. The evolution of
this average diffusion rate according tot21*0

t rB(t8)dt8 ~see
Fig. 27! coupled with the time independence of theA distri-
bution shape, i.e., dynamic scaling, essentially yields
mean-field time behavior of̂xWA

2(t)&, Eq. ~18!. Also, as the
mean-square displacement is an integral quantity, the n
associated with fluctuations in theB particle density become
suppressed. Consequently, under the assumption thaaA
5aB to a very good approximation at least, one may m
sure critical exponents of the reactingB particle system via
the passiveA species using fewer simulation runs and w
reduced statistical noise.

Fluctuation effects really become manifest in the high
moments only, and in the overall shape of theA displacement
distribution. Figure 26 shows theA species displacement dis
tributionsnA(xW ,t) measured at different times from most
the systems examined thus far~apart from the case of radio
active B decay!, all scaled to have approximately the sam
second moment^xWA

2&. Aside from the case of one

FIG. 27. The distribution of effectiveA diffusivities, obtained as
the average number of hops per unit time, at various times du
simulations for critical DP processes for theB system ind51. The
inset shows that the average diffusion coefficient becomes iden
with the temporal average of theB species density. The diffusion
rate distributions are rescaled to the same average for better
parison.
.

e

ne
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e
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dimensionalB pair annihilation with its strong anticorrela
tions, all distributions appear to at least approximately c
lapse to the same scaling function. As we have s
previously, compared with a Gaussian this common distri
tion features an excess of particles both in its ‘‘tails’’ an
peak. For the one-dimensional pair annihilation case th
deviations are markedly enhanced. We find this apparent
versality in theA particle displacement distribution quite su
prising. Yet in each case depicted in Fig. 26, correlatio
developed between theB particles, leading to significant in
homogeneities in their spatial distribution.

However, assuming that theA-B coupling is sufficiently
weak that approximateA spatial homogeneity is maintained
the distribution of the time-averaged effectiveA diffusivities
is constrained by the global valueD̃^rB(t)&. We compared
these quantities for a one-dimensional DP system~system
size 10 000, ten runs withl50.01) and indeed saw excellen
agreement at long times~see the inset of Fig. 27!, indicating
that at each time step on average oneA particle hops to each
B site. The discrepancy at small times can be attributed
numerical errors in computing the integral. Apparently t
time-averaged diffusion rate distribution over theA particles
is common to the bulk of the reaction systems studied h
To address the apparent universality in systems of positiv
weak ~but existing! B species correlations, we should no
that localization, by which we mean the annihilation of t
nearestB particle to the newly localizedA, is often imper-
manent when theA resides in aB cluster that results from
positive correlations. Figure 27 shows the effectiveA diffu-
sion rate distribution at various times for the on
dimensional DP system. The distribution att510 000 is still
fairly peaked, which may be accounted for by the initial hi
density ofB particles leading to homogenization of the d
fusion rates. The distributions at later times~scaled to match
the average value of thet510 000 distribution! seems ap-
proximately constant, though perhaps the peak is slo
shifting towards smaller values. Finally, we note that t
measured values ofD̃ were approximately the same for a
systems, namely,D̃'0.5 in d51 andD̃'0.25 ind52.
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